(2008•宜昌)如圖,在Rt△ABC中,AB=AC,P是邊AB(含端點)上的動點.過P作BC的垂線PR,R為垂足,∠PRB的平分線與AB相交于點S,在線段RS上存在一點T,若以線段PT為一邊作正方形PTEF,其頂點E,F(xiàn)恰好分別在邊BC,AC上.
(1)△ABC與△SBR是否相似,說明理由;
(2)請你探索線段TS與PA的長度之間的關(guān)系;
(3)設(shè)邊AB=1,當(dāng)P在邊AB(含端點)上運動時,請你探索正方形PTEF的面積y的最小值和最大值.

【答案】分析:(1)三角形SBR和ABC中,有一個公共角B,都有一組直角,如果再有一組角相等即可證明兩三角形相似,SR平分∠BRP,那么∠BRS=45°=∠C,因此兩三角形的相似條件湊齊,兩三角形相似;
(2)應(yīng)該是相等關(guān)系,△STP和△APE中,PT=PF,又有一組直角,那么只要再有一組角相等即可得出全等,∠TPS+∠APF=180-90=90°,那么不難證得∠STP=∠APF,因此兩三角形全等,那么TS=PA;
(3)要求正方形FPTE的面積,那么就要求出它的邊長.RS是等腰直角△PRS的高,那么BS=PS,PS=,由(2)證得的全等三角形中我們可得出PS=AF,如果設(shè)PA=x,我們就能用x表示出AF的值,直角三角形APF中,我們就能用x表示出PF2,也就得出了y與x的函數(shù)關(guān)系式,然后確定x的取值范圍,x最小時x=PA=0此時P與A重合,S與T重合,E與R重合.x最大時,T與R重合,此時TS=BS=SP=PA,因此PA=,那么x的范圍就是0≤x≤,然后根據(jù)函數(shù)的性質(zhì)和自變量的范圍求出y的最大和最小值.
解答:解:(1)∵RS是直角∠PRB的平分線,
∴∠PRS=∠BRS=45°.
在△ABC與△SBR中,∠C=∠BRS=45°,
∠B是公共角,
∴△ABC∽△SBR.

(2)線段TS的長度與PA相等.
∵四邊形PTEF是正方形,
∴PF=PT,∠SPT+∠FPA=180°-∠TPF=90°,
在Rt△PFA中,∠PFA+∠FPA=90°,
∴∠PFA=∠TPS,
∴Rt△PAF≌Rt△TSP,∴PA=TS.
當(dāng)點P運動到使得T與R重合時,這時△PFA與△TSP都是等腰直角三角形且底邊相等,即有PA=TS.
由以上可知,線段ST的長度與PA相等.

(3)由題意,RS是等腰Rt△PRB的底邊PB上的高,
∴PS=BS,∴BS+PS+PA=1,∴PS=
設(shè)PA的長為x,易知AF=PS,
則y=PF2=PA2+PS2,得y=x2+(2,
即y=,
根據(jù)二次函數(shù)的性質(zhì),當(dāng)x=時,y有最小值為
如圖2,當(dāng)點P運動使得T與R重合時,PA=TS為最大.
易證等腰Rt△PAF≌等腰Rt△PSR≌等腰Rt△BSR,
∴PA=
如圖3,當(dāng)P與A重合時,得x=0.
∴x的取值范圍是0≤x≤
∴①當(dāng)x的值由0增大到時,y的值由減小到
∴②當(dāng)x的值由增大到時,y的值由增大到
,
∴在點P的運動過程中,正方形PTEF面積y的最小值是,y的最大值是
點評:平移、翻折和旋轉(zhuǎn)是初中幾何重要的三種變換方式,變換之后的幾何圖形與原圖形對應(yīng)的邊、角均相等.巧妙地運用變換的基本性質(zhì)或構(gòu)造變換圖形,均可以使題目的解答簡易而順暢.注意本題中求出二次函數(shù)后要討論出x的取值范圍然后再根據(jù)自變量的范圍求y的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•宜昌)如圖1,已知四邊形OABC中的三個頂點坐標為O(0,0),A(0,n),C(m,0).動點P從點O出發(fā)依次沿線段OA,AB,BC向點C移動,設(shè)移動路程為z,△OPC的面積S隨著z的變化而變化的圖象如圖2所示.m,n是常數(shù),m>1,n>0.
(1)請你確定n的值和點B的坐標;
(2)當(dāng)動點P是經(jīng)過點O,C的拋物線y=ax2+bx+c的頂點,且在雙曲線y=上時,求這時四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省廣州市廣雅實驗中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•宜昌)如圖1,已知四邊形OABC中的三個頂點坐標為O(0,0),A(0,n),C(m,0).動點P從點O出發(fā)依次沿線段OA,AB,BC向點C移動,設(shè)移動路程為z,△OPC的面積S隨著z的變化而變化的圖象如圖2所示.m,n是常數(shù),m>1,n>0.
(1)請你確定n的值和點B的坐標;
(2)當(dāng)動點P是經(jīng)過點O,C的拋物線y=ax2+bx+c的頂點,且在雙曲線y=上時,求這時四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•宜昌)如圖1,已知四邊形OABC中的三個頂點坐標為O(0,0),A(0,n),C(m,0).動點P從點O出發(fā)依次沿線段OA,AB,BC向點C移動,設(shè)移動路程為z,△OPC的面積S隨著z的變化而變化的圖象如圖2所示.m,n是常數(shù),m>1,n>0.
(1)請你確定n的值和點B的坐標;
(2)當(dāng)動點P是經(jīng)過點O,C的拋物線y=ax2+bx+c的頂點,且在雙曲線y=上時,求這時四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2008•宜昌)如圖1,草原上有A,B,C三個互通公路的奶牛養(yǎng)殖基地,B與C之間距離為100千米,C在B的正北方,A在C的南偏東47°方向且在B的北偏東43°方向.A地每年產(chǎn)奶3萬噸;B地有奶牛9 000頭,平均每頭牛的年產(chǎn)奶量為3噸;C地養(yǎng)了三種奶牛,其中黑白花牛的頭數(shù)占20%,三河牛的頭數(shù)占35%,其他情況反映在圖2,圖3中.
(1)通過計算補全圖3;
(2)比較B地與C地中,哪一地平均每頭牛的年產(chǎn)奶量更高?
(3)如果從B,C兩地中選擇一處建設(shè)一座工廠解決三個基地的牛奶加工問題,當(dāng)運送一噸牛奶每千米的費用都為1元(即1元/噸•千米時),那么從節(jié)省運費的角度考慮,應(yīng)在何處建設(shè)工廠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2008•宜昌)如圖,已知△ABC的頂點B的坐標是(2,1),將△ABC向左平移兩個單位后,點B平移到B1,則B1的坐標是( )

A.(4,1)
B.(0,1)
C.(-1,1)
D.(1,0)

查看答案和解析>>

同步練習(xí)冊答案