如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點, A點在原點的左側(cè),B點的坐標(biāo)為(3,0),與y軸交于C(0,-3)點,點P是直線BC下方的拋物線上一動點.
(1)求b,c的值.
(2)連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形, 那么是否存在點P,使四邊形為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點P運動到什么位置時,四邊形 ABPC的面積最大,并求出此時P點的坐標(biāo)和四邊形ABPC的最大面積.
解:(1)將B、C兩點的坐標(biāo)代入得 …………2分
解得:
所以二次函數(shù)的表達(dá)式為: …………3分
(2)存在點P,使四邊形為菱形.設(shè)P點坐標(biāo)為(x,),交CO于E
若四邊形是菱形,則有PC=PO.連結(jié), 則PE⊥CO于E,∴OE=EC=∴=. ………5分
∴=
解得=,=(不合題意,舍去)
∴P點的坐標(biāo)為(,) ………………7分
(3)過點P作軸的平行線與BC交于點Q,與OB交于點F,
設(shè)P(x,),
易得,直線BC的解析式為
則Q點的坐標(biāo)為(x,x-3).
= …………10分
當(dāng)時,四邊形ABPC的面積最大
此時P點的坐標(biāo)為,四邊形ABPC的面積. …………12分
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com