練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知α是一元二次方程  x2x-1=0  中較大的根,則下面對(duì)α的估計(jì)正確的是(  )

 A. 0<α<1         B.  1<α<1.5            C.1.5<α<2     D.2<α<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


解方程     4x2-16=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖所示,某公園設(shè)計(jì)節(jié)日鮮花擺放方案,其中一個(gè)花壇由一批花盆堆成六角垛,頂層一個(gè),以下各層堆成六邊形,逐層每邊增加一個(gè)花盆,則第七層的花盆的個(gè)數(shù)是(  )

 

A.

124

B.

125

C.

126

D.

127

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


、、、、這六個(gè)數(shù)中,隨機(jī)取出一個(gè)數(shù),記為,那么使得關(guān)于的反比例函數(shù)經(jīng)過(guò)第二、四象限,且使得關(guān)于的方程有整數(shù)解的概率為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)AC的坐標(biāo)分別為(﹣1,0),(0,﹣3),直線x=1為拋物線的對(duì)稱軸,點(diǎn)D為拋物線的頂點(diǎn),直線BC與對(duì)稱軸相交于點(diǎn)E

(1)求拋物線的解析式并直接寫出點(diǎn)D的坐標(biāo);

(2)點(diǎn)P為直線x=1右方拋物線上的一點(diǎn)(點(diǎn)P不與點(diǎn)B重合),記A、B、C、P四點(diǎn)所構(gòu)成的四邊形面積為,若,求點(diǎn)P的坐標(biāo);

(3)點(diǎn)Q是線段BD上的動(dòng)點(diǎn),將△DEQ沿邊EQ翻折得到△,是否存在點(diǎn)Q使得△與△BEQ的重疊部分圖形為直角三角形,若存在,請(qǐng)求出BQ的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


實(shí)驗(yàn)學(xué)校九年級(jí)一班十名同學(xué)定點(diǎn)投籃測(cè)試,每人投籃六次,投中的次數(shù)統(tǒng)計(jì)如下:

5,4,3,5,5,2,5,3,4,1,則這組數(shù)據(jù)的中位數(shù),眾數(shù)分別為( 。

A.5,5       B.5,4           C.4,4          D.4,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


問(wèn)題背景:若矩形的周長(zhǎng)為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長(zhǎng)為,面積為,則的函數(shù)關(guān)系式為: (當(dāng)>0),利用函數(shù)的圖像或通過(guò)配方均可求得該函數(shù)的最大值.

提出新問(wèn)題:若矩形的面積為1,則該矩形的周長(zhǎng)有無(wú)最大值或最小值?若有,最大(。┲凳嵌嗌?

分析問(wèn)題:若設(shè)該矩形的一邊長(zhǎng)為>0),周長(zhǎng)為,則的函數(shù)關(guān)系式為:,問(wèn)題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗.

解決問(wèn)題:借鑒我們已有研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)(當(dāng)>0)的最大(。┲.

(1)實(shí)踐操作:填寫下表,并用描點(diǎn)法畫出函數(shù)(當(dāng)>0)的圖像:

                            

(2)觀察猜想:觀察該函數(shù)的圖像,猜想當(dāng)

=         時(shí),函數(shù)(當(dāng)>0)

有最    值(填“大”或“小”),是          .

(3)推理論證:?jiǎn)栴}背景中提到,通過(guò)配方可求二次函數(shù) (當(dāng)>0)的最大值,請(qǐng)你嘗試通過(guò)配方求函數(shù)(當(dāng)>0)的最大(。┲,以證明你的猜想. 〔提示:當(dāng)>0時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案