【題目】如圖,在正方形ABCD中,點E、F分別在邊BC和CD上,且BE=CF,連接AE、BF,其相交于點G,將△BCF沿BF翻折得到△BC′F,延長FC′交BA延長線于點H.
(1)①求證:AE=BF;
②猜想AE與BF的位置關(guān)系,并證明你的結(jié)論;
(2)若AB=3,EC=2BE,求BH的長.
【答案】(1)①詳見解析;②AE⊥BF,證明詳見解析;(2)BH=5.
【解析】
(1)①根據(jù)正方形的性質(zhì)得到BA=BC,∠ABC=∠BCD=90°,利用SAS證明△ABE≌△BCF,根據(jù)全等三角形的性質(zhì)證明結(jié)論;
②根據(jù)全等三角形的性質(zhì)得到∠BAE=∠CBF,根據(jù)垂直的定義證明;
(2)根據(jù)折疊的性質(zhì)得到∠C′BF=∠CBF,∠BC′F=∠BCF=90°,證明HB=HF,根據(jù)勾股定理列式計算即可.
(1)①證明:∵四邊形ABCD是正方形,
∴BA=BC,∠ABC=∠BCD=90°,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(SAS),
∴AE=BF;
②解:AE⊥BF,
理由如下:∵△ABE≌△BCF,
∴∠BAE=∠CBF,
∵∠ABE=90°,
∴∠BAE+∠AEB=90°,
∴∠CBF+∠AEB=90°,即AE⊥BF;
(2)解:∵BC=AB=3,EC=2BE,
∴EC=2,BE=1,
∴C′F=CF=1,
由折疊的性質(zhì)可知,∠C′BF=∠CBF,∠BC′F=∠BCF=90°,
∵∠C′FB+∠C′BF=90°,∠HBF+∠FBC=90°,
∴∠C′FB=∠HBF,
∴HB=HF,
∴HC′=HF﹣C′F=HB﹣C′F=3+AH﹣1=2+AH,
在Rt△HBC′中,HB2=C′B2+C′H2,即(3+AH)2=32+(2+AH)2,
解得,AH=2,
∴BH=AH+AB=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點O是AB邊上一點,以O為圓心OB為半徑的⊙O與邊AB相交于點E,與AC邊相切于D點,連接OC交⊙O于點F.
(1)連接DE,求證:OC∥DE;
(2)若⊙O的半徑為3.
①連接DF,若四邊形OEDF為菱形,弧BD的長為_____(結(jié)果保留π)
②若AE=2,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A是拋物線y=ax2+bx+c的頂點,點B(0,2)是拋物線與y軸的交點,直線BC平行于x軸,交拋物線于點C,D為x軸上任意一點,若S△ABC=3,S△BCD=2,則點A的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是等腰三角形ABC底邊BC上的高,AD=1,DC=,將△ADC繞著點D旋轉(zhuǎn),得△DEF,點A、C分別與點E、F對應(yīng),當EF與直線AB重合時,設(shè)AC與DF相交于點O,那么由線段OC、OF和弧CF圍成的陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))
如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,延長CA到點F,使得AF=AC,連接DF、BE,則線段BE與DF的數(shù)量關(guān)系為 ,位置關(guān)系為 ;
(2)(拓展研究)
將△ADE繞點A旋轉(zhuǎn),(1)中的結(jié)論有無變化?僅就圖(2)的情形給出證明;
(3)(解決問題)
當AB=2,AD=,△ADE旋轉(zhuǎn)得到D,E,F三點共線時,直接寫出線段DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10的網(wǎng)格中,點A、B、C均在網(wǎng)格線的交點上,
(1)畫出△ABC關(guān)于直線l對稱的△A′B′C′;
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A1B1C1;
(3)在(2)的條件下,求線段BC掃過的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點M從點A出發(fā),沿A→B→C方向運動,當點M到達點C時停止運動,過點M作MN⊥AM交CD于點N,設(shè)點M的運動路程為x,CN=y,圖2表示的是y與x的函數(shù)關(guān)系的大致圖象,則矩形ABCD的面積是( 。
A.20B.18C.10D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AD=8,CD=4,點E從點D出發(fā),沿線段DA以每秒1個單位長的速度向點A方向移動,同時點F從點C出發(fā),沿射線CD方向以每秒2個單位長的速度移動,當B,E,F三點共線時,兩點同時停止運動.設(shè)點E移動的時間為t(秒).
(1)求當t為何值時,兩點同時停止運動;
(2)設(shè)四邊形BCFE的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)求當t為何值時,以E,F,C三點為頂點的三角形是等腰三角形;
(4)求當t為何值時,∠BEC=∠BFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)九年級學(xué)生中考體育成績情況,現(xiàn)從中抽取部分學(xué)生的體育成績進行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)統(tǒng)計,統(tǒng)計結(jié)果如圖1、圖2所示.
根據(jù)上面提供的信息,回答下列問題:
(1)本次抽查了 名學(xué)生的體育成績;
(2)補全圖1,求圖2中D分數(shù)段所占的圓心角是 度;
(3)已知該校九年級共有900名學(xué)生,請估計該校九年級學(xué)生體育成績達到40分以上(含40分)的人數(shù)為 人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com