已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:①b2>4ac;②abc>0;③2a-b=0;④8a+c<0;⑤9a+3b+c<0,其中結(jié)論正確的是 (     ).(填正確結(jié)論的序號)
①②⑤
由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
解:①由圖知:拋物線與x軸有兩個不同的交點,則△=b2-4ac>0,∴b2>4ac,故①正確;
②拋物線開口向上,得:a>0;
拋物線的對稱軸為x=-=1,b=-2a,故b<0;
拋物線交y軸于負半軸,得:c<0;
所以abc>0;
故②正確;
③∵拋物線的對稱軸為x=-=1,b=-2a,
∴2a+b=0,故2a-b=0錯誤;
④根據(jù)②可將拋物線的解析式化為:y=ax2-2ax+c(a≠0);
由函數(shù)的圖象知:當(dāng)x=-2時,y>0;即4a-(-4a)+c=8a+c>0,故④錯誤;
⑤根據(jù)拋物線的對稱軸方程可知:(-1,0)關(guān)于對稱軸的對稱點是(3,0);
當(dāng)x=-1時,y<0,所以當(dāng)x=3時,也有y<0,即9a+3b+c<0;故⑤正確;
所以這結(jié)論正確的有①②⑤.
故答案為:①②⑤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標系xOy中,已知點P是反比例函數(shù)y=(x>0)圖象上一個動點,以P為圓心的圓始終與y軸相切,設(shè)切點為A.
(1)如圖1,⊙P運動到與x軸相切,設(shè)切點為K,試判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運動到與x軸相交,設(shè)交點為B,C.當(dāng)四邊形ABCP是菱形時:
①求出點A,B,C的坐標.
②在過A,B,C三點的拋物線上是否存在點M,使△MBP的面積是菱形ABCP面積的?若存在,試求出所有滿足條件的M點的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.

(1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標系中,當(dāng)點E滑動到某處時,點F恰好落在拋物線y=-x2+x+1上,求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A坐標為(-2,0),點B坐標為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段OB于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=x2+mx+n的圖象經(jīng)過A,C兩點.

(1)求此拋物線的函數(shù)表達式;
(2)求證:∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時,求此時點E的坐標;
(4)在(3)的條件下,當(dāng)直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的()倍.若存在,請直接寫出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若二次函數(shù)y=(x-m)2-1,當(dāng)x<1時,y隨x的增大而減小,則m的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線y=3x2向左平移2個單位,再向下平移1個單位,所得拋物線為( 。
A.y=3(x+2)2-1B.y=3(x-2)2+1
C.y=3(x-2)2-1D.y=3(x+2)2+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若A(-4,y1),B(-3,y2),C(1,y3)為二次函數(shù)y=-x2+4x-5的圖象上的三點,則y1,y2,y3的大小關(guān)系是(     )    
A.B.
C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O為坐標原點,點A、B的坐標分別為(8,0)、(0,6).動點Q從點O、動點P從點A同時出發(fā),分別沿著OA方向、AB方向均以1個單位長度/秒的速度勻速運動,運動時間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連接CD、QC.
(1)求當(dāng)t為何值時,點Q與點D重合?
(2)設(shè)△QCD的面積為S,試求S與t之間的函數(shù)關(guān)系式,并求S的最大值;
(3)若⊙P與線段QC只有一個交點,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個頂點,已知BC∥x軸,點A在x軸上,點C在y軸上,且AC=BC.

(1)求拋物線的對稱軸;
(2)寫出A,B,C三點的坐標并求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案