【題目】如圖,已知四邊形ABCD是平行四邊形,∠BCD的平分線CF交AB于F,∠ADC的平分線DG交邊AB于G.
(1)線段AF與GB相等嗎?
(2)當(dāng)四邊形ABCD滿足什么條件時(shí),△EFG為等腰直角三角形,并說明理由.
【答案】(1)AF=GB;(2)四邊形ABCD是矩形,理由見解析.
【解析】
試題(1)根據(jù)平行四邊形的性質(zhì),AD=BC,要求AF=GB,可先利用角關(guān)系求解AG=BF,再減去公共線段FG即可;
(2)由于DG、CF是平行四邊形一組鄰角的平分線,所以△EFG已經(jīng)是直角三角形了,要成為等腰直角三角形,則必須有EF=EG或者∠EFG=∠EGF=45°,從而即可推得四邊形ABCD是矩形.
試題解析:(1)∵四邊形ABCD為平行四邊形
∴AB∥CD,AD∥BC,AD=BC,
∴∠AGD=∠CDG,∠DCF=∠BFC,
∵DG、CF分別平分∠ADC和∠BCD,
∴∠CDG=∠ADG,∠DCF=∠BCF,
∴∠ADG=∠AGD,∠BFC=∠BCF,
∴AD=AG,BF=BC,
∴AG=BF,即AG-FG=BF-FG,
∴AF=BG;
(2)∵AD∥BC,
∴∠ADC+∠BCD=180°,
∵DG、CF分別平分∠ADC和∠BCD,
∴∠EDC+∠ECD=90°,
∴∠DEC=90°,
∴∠FEG=90°,
∵要想△EFG為等腰直角三角形,
∴∠BFE=∠FGE=45°,
∴∠ADC=2∠CDG=2∠FGE=90°,
因此四邊形ABCD為矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中剪去一個(gè)邊長為1的小正方形CEFG,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B時(shí)停止(不含點(diǎn)A和點(diǎn)B),則△ABP的面積S隨著時(shí)間t變化的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿∠CAB的角平分線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,E、F為對(duì)角線BD上的兩點(diǎn),且∠DAE=∠BCF.
(1)求證:AE=CF;
(2)求證:AE∥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=3,PB=3,PC=5,以BC為邊在△ABC外作△BQC≌△BPA,連接PQ,則以下結(jié)論錯(cuò)誤的是()
A. △BPQ是等邊三角形 B. △PCQ是直角三角形 C. ∠APB=150° D. ∠APC=135°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是A,B,C三個(gè)島的平面圖,C島在A島的北偏東32°方向,B島在A島的北偏東66°方向,C島在B島的北偏西44°方向.求C島看A、B兩島的視角∠ACB的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC⊥BC,AC=BC,D是BC上一點(diǎn),連接AD,與∠ACB的平分線交于點(diǎn)E,連接BE.若S△ACE= ,S△BDE= ,則AC= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com