【題目】在△ABC中,AB=15AC=20,BC邊上的高AD=12,試求BC邊的長(zhǎng).

【答案】BC的長(zhǎng)為25或7.

【解析】

兩個(gè)圖兩種情況,分別對(duì)兩個(gè)圖結(jié)合已知條件用勾股定理求BC的長(zhǎng).

如圖(1),ABC中,AB=15,AC=20,BC邊上高AD=12,

RtABDAB=15,AD=12,由勾股定理,

BD==9,

RtADCAC=20,AD=12,由勾股定理,

DC==16,

BC的長(zhǎng)為BD+DC=9+16=25.

如圖(2),ABC中,AB=15,AC=20,BC邊上高AD=12,

RtABDAB=15,AD=12,由勾股定理,

BD==9,

RtACDAC=20,AD=12,由勾股定理,

DC==16,BC=CD-BD=7.

綜上所述,BC的長(zhǎng)為257.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=a(x﹣3)2+ 過(guò)點(diǎn)C(0,4),頂點(diǎn)為M,與x軸交于A、B兩點(diǎn).如圖所示以AB為直徑作圓,記作⊙D,下列結(jié)論:
①拋物線的對(duì)稱軸是直線x=3;
②點(diǎn)C在⊙D外;
③在拋物線上存在一點(diǎn)E,能使四邊形ADEC為平行四邊形;
④直線CM與⊙D相切.
正確的結(jié)論是( )

A.①③
B.①④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,D是AC的中點(diǎn),E是線段BC延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)A作BE的平行線與線段ED的延長(zhǎng)線交于點(diǎn)F,連接AE,CF.

(1)求證:AF=CE;
(2)若AC=EF,試判斷四邊形AFCE是什么樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形一條邊的邊長(zhǎng)為3,它的另兩條邊的邊長(zhǎng)是關(guān)于x的一元二次方程x2﹣12x+k=0的兩個(gè)根,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩同學(xué)從A地出發(fā),騎自行車在同一條路上行駛到B地,他們離出發(fā)地的距離s(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖中提供的信息,有下列說(shuō)法:

1)他們都行駛了18千米;

2)甲在途中停留了0.5小時(shí);

3)乙比甲晚出發(fā)了0.5小時(shí);

4)相遇后,甲的速度小于乙的速度;

5)甲、乙兩人同時(shí)到達(dá)目的地

其中符合圖象描述的說(shuō)法有(

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】聯(lián)想與探索:

如圖1,將線段A1A2本向右平移1個(gè)單位長(zhǎng)度至B1B2,得到封閉圖形A1A2B2B1(即陰影部分),在圖2中,將折線A1A2A3向右平移1個(gè)單位長(zhǎng)度至B1B2B3,得到封閉圖形A1A2A3B3B2B1(即陰影部分).

(1)在圖3中,請(qǐng)你類似地畫一條有兩個(gè)折點(diǎn)的折線,同樣向右平移1個(gè)單位長(zhǎng)度,從而得到一個(gè)封閉圖形,并用陰影表示;

(2)請(qǐng)你分別寫出上述三個(gè)圖形中除去陰影部分后剩余部分的面積(設(shè)長(zhǎng)方形水平方向長(zhǎng)均為a,豎直方向長(zhǎng)均為b) S1= ,S2= S3= ;

(3)如圖4,在一塊長(zhǎng)方形草地上,有一條彎曲的小路(小路任何地方的水平寬度都是2個(gè)單位長(zhǎng)度,長(zhǎng)方形水平方向長(zhǎng)為a,豎直方向長(zhǎng)為b),則空白部分表示的草地面積是多少?

(4)如圖5,若在(3)中的草地上又有一條橫向的曲小路(小路任何地方的寬度都是1個(gè)單位長(zhǎng)度),則空白部分表示的草地面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為4的正方形ABCD內(nèi)接于點(diǎn)O,點(diǎn)E是 上的一動(dòng)點(diǎn)(不與A、B重合),點(diǎn)F是 上的一點(diǎn),連接OE、OF,分別與AB、BC交于點(diǎn)G,H,且∠EOF=90°,有以下結(jié)論: ① =
②△OGH是等腰三角形;
③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;
④△GBH周長(zhǎng)的最小值為4+
其中正確的是(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:代數(shù)式A2x22x1,代數(shù)式B=﹣x2+xy+1,代數(shù)式M4A(3A2B)

(1)當(dāng)(x+1)2+|y2|0時(shí),求代數(shù)式M的值;

(2)若代數(shù)式M的值與x的取值無(wú)關(guān),求y的值;

(3)當(dāng)代數(shù)式M的值等于5時(shí),求整數(shù)x、y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)C,D是半圓弧上的兩個(gè)動(dòng)點(diǎn),在運(yùn)動(dòng)的過(guò)程中保持∠COD100°.

(1)如圖①,OE平分∠AOC,OF平分∠BOD,求∠EOF的度數(shù);

(2)如圖②,已知∠AOC的度數(shù)為x,OE平分∠AOD,OF平分∠BOC,求∠EOF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案