【題目】如圖,在Rt△ABC中,C90°,BC6,AC8,按圖中所示方法將BCD沿BD折疊,使點C落在AB邊的C點,那么ADC'的面積是(  )

A.3B.4C.5D.6

【答案】D

【解析】

先根據(jù)勾股定理得到AB10,再根據(jù)折疊的性質(zhì)得到DCDCBCBC6,則AC4,在Rt△ADC中利用勾股定理得(8x2x2+42,解得x3,然后根據(jù)三角形的面積公式計算即可.

∵∠C90°,BC6AC8,

AB10

∵將BCD沿BD折疊,使點C落在AB邊的C點,

∴△BCD≌△BCD,

∴∠C=∠BCD90°,DCDC,BCBC6,

ACABBC4

DCx,則AD=(8x),

RtADC中,AD2AC2+CD2,

即(8x2x2+42,解得x3,

∵∠ACD90°

∴△ADC的面積×AC′×CD×4×36,

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=4,點E在邊AB上,點F在邊CD上,點G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,若E,FAC上兩動點,分別從A,C兩點以相同的速度向C、A運動,其速度為1cms

1)當EF不重合時,四邊形DEBF是平行四邊形嗎?說明理由;

2)若BD=8cm,AC=12cm,當運動時間t為何值時,以D、E、B、F為頂點的四邊形是矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADBC,∠EAD=∠C

1)試判斷AECD的位置關系,并說明理由;

2)若∠FEC=∠BAE,∠EFC50°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長都為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將ABC平移后得△DEF,使點A的對應點為點D,點B的對應點為點E

(1)畫出△DEF

(2)連接AD、BE,則線段ADBE的關系是 ;

(3)求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著柴靜紀錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購進了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進價比一臺B型空氣凈化器的進價多300元,用7500元購進A型空氣凈化器和用6000元購進B型空氣凈化器的臺數(shù)相同.

(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進價各為多少元?

(2)在銷售過程中,A型空氣凈化器因為凈化能力強,噪音小而更受消費者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對B型空氣凈化器進行降價銷售,經(jīng)市場調(diào)查,當B型空氣凈化器的售價為1800元時,每天可賣出4臺,在此基礎上,售價每降低50元,每天將多售出1臺,如果每天商社電器銷售B型空氣凈化器的利潤為3200元,請問商社電器應將B型空氣凈化器的售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:

(1)當有n張桌子時,兩種擺放方式各能坐多少人?

(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學在一次實驗中統(tǒng)計了某一結果出現(xiàn)的頻率,給出的統(tǒng)計圖如圖所示,則 符合這一結果的實驗可能是( )

A. 擲一枚正六面體的骰子,出現(xiàn)6點的概率

B. 擲一枚硬幣,出現(xiàn)正面朝上的概率

C. 任意寫出一個整數(shù),能被2整除的概率

D. 一個袋子中裝著只有顏色不同,其他都相同的兩個紅球和一個黃球,從中任意取出一個是黃球的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電腦公司經(jīng)銷甲種型號電腦,受疫情影響,電腦價格不斷下降,今年四月份的電腦售價比去年同期每臺降價1000元,如果賣出相同數(shù)量的甲種電腦,去年銷售額為10萬元,今年銷售額只有8萬元.

1)今年四月份甲種電腦每臺售價多少元?

2)為了增加收入,電腦公司決定再進銷售價為6000元的乙種型號電腦,四月份甲、乙兩種電腦共銷售15臺,如果銷售額不低于8萬元,則乙種型號電腦銷售不低于多少臺?

查看答案和解析>>

同步練習冊答案