精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A、B的坐標(biāo)分別為A(0,4)和B(-2,0),連接AB.
(1)現(xiàn)將△AOB繞點A按逆時針方向旋轉(zhuǎn)90°得到△AO1B1,請畫出△AO1B1,并直接寫出點B1、O1的坐標(biāo)(注:不要求證明);
(2)求經(jīng)過B、A、O1三點的拋物線對應(yīng)的函數(shù)關(guān)系式,并畫出拋物線的略圖.
分析:(1)將三角形的各頂點以點A按逆時針方向旋轉(zhuǎn)90°得到三個對應(yīng)點,然后順次連接.并從坐標(biāo)系中寫出此三點的坐標(biāo).
(2)設(shè)出拋物線的函數(shù)式,把這三點的坐標(biāo)代入函數(shù)式求二次函數(shù)的系數(shù).
解答:精英家教網(wǎng)解:(1)如圖,畫出△AO1B1
B1(4,2),O1(4,4);(4分)

(2)設(shè)所求拋物線對應(yīng)的函數(shù)關(guān)系式為y=a(x-m)2+n,
由AO1∥x軸,得m=2.
∴y=a(x-2)2+n.
∵拋物線經(jīng)過點A、B,
4a+n=4
16a+n=0
,
解得
a=-
1
3
n=
16
3
,
∴所求拋物線對應(yīng)的函數(shù)關(guān)系式為y=-
1
3
(x-2)2+
16
3
,
即y=-
1
3
x2+
4
3
x+4.(9分)
所畫拋物線圖象如圖所示.(11分)
點評:本題綜合考查了旋轉(zhuǎn)變換圖形,及二次函數(shù)的圖象.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案