【題目】如圖,在平面直角坐標(biāo)系上,△ABC的頂點A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點B(1,3),將△ABC以點B為旋轉(zhuǎn)中心順時針方向旋轉(zhuǎn)90°得到△DBE,恰好有一反比例函數(shù)y= 圖像恰好過點D,則k的值為( )
A.6
B.﹣6
C.9
D.﹣9
【答案】B
【解析】解:如圖,∵△ABC以點B為旋轉(zhuǎn)中心順時針方向旋轉(zhuǎn)90°得到△DBE,點B(1,3),AB∥y軸,
∴BD=BA=3,∠DBA=90°,
∴BD∥x軸,
∴DF=3﹣1=2,
∴D(﹣2,3).
∵反比例函數(shù)y= 圖像恰好過點D,
∴3= ,解得k=﹣6.
故選B.
【考點精析】認(rèn)真審題,首先需要了解反比例函數(shù)的圖象(反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點),還要掌握比例系數(shù)k的幾何意義(幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線y= x2+bx+c(b,c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(4,3),直角頂點B在第四象限.
(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.
(i)若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當(dāng)以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標(biāo);
(ii)取BC的中點N,連接NP,BQ.試探究 是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,BC=4cm,AC=3cm,把△ABC繞點A順時針旋轉(zhuǎn)90°后,得到△A1B1C1(如圖所示),則線段AB所掃過的面積為( )
A.5
B. πcm2
C. πcm2
D.5πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC與BD互相垂直,若AB=3,BC=4,CD=5,則AD的長為( 。
A. 3 B. 4 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小強(qiáng)從熱氣球上測量一棟高樓頂部的傾角為30°,測量這棟高樓底部的俯角為60°,熱氣球與高樓的水平距離為45米,則這棟高樓高為多少(單位:米)( )
A.15
B.30
C.45
D.60
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC和BD相交于點O,過O作EF⊥AC,交AD于E,交BC于F,連接AF、CE.
(1)求證:四邊形AECF是菱形
(2)若AB=3,BC=4,則菱形AECF的周長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市居民使用自來水按如下標(biāo)準(zhǔn)收費(水費按月繳納):
(1)當(dāng)a=2時,某用戶一個月用了28 m3水,求該用戶這個月應(yīng)繳納的水費;
(2)設(shè)某戶月用水量為n 立方米,當(dāng)n>20時,則該用戶應(yīng)繳納的水費________元(用含a、n的整式表示);
(3)當(dāng)a=2時,甲、乙兩用戶一個月共用水40m3 ,已知甲用戶繳納的水費超過了24元,設(shè)甲用戶這個月用水xm3 ,試求甲、乙兩用戶一個月共繳納的水費(用含x的整式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4厘米,動點P從點A出發(fā)沿AB邊由A向B以1厘米/秒的速度勻速移動(點P不與點A、B重合),動點Q從點B出發(fā)沿拆線BC-CD以2厘米/秒的速度勻速移動。點P、Q同時出發(fā),當(dāng)點P停止運(yùn)動,點Q也隨之停止。聯(lián)結(jié)AQ交BD于點E。設(shè)點P運(yùn)動時間為t秒。
(1)用t表示線段PB的長;
(2)當(dāng)點Q在線段BC上運(yùn)動時,t為何值時,∠BEP和∠BEQ相等;
(3)當(dāng)t為何值時,線段P、Q之間的距離為2cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O外一點,過點C作⊙O的切線,切點為B,連結(jié)AC交⊙O于D,∠C=38°.點E在AB右側(cè)的半圓上運(yùn)動(不與A、B重合),則∠AED的大小是( 。
A.19°
B.38°
C.52°
D.76°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com