【題目】如圖,AB為⊙O的直徑,C為⊙O外一點,過點C作⊙O的切線,切點為B,連結(jié)AC交⊙O于D,∠C=38°.點E在AB右側(cè)的半圓上運動(不與A、B重合),則∠AED的大小是( 。
A.19°
B.38°
C.52°
D.76°
【答案】B
【解析】連接BD,
∵AB為⊙O的直徑,BC是⊙O的切線,
∴∠ADB=90°,AB⊥BC,
∴∠C+∠BAC=∠BAC+∠ABD=90°,
∴∠ABD=∠C,
∵∠AED=∠ABD,
∴∠AED=∠C=38°.
故選B.
【考點精析】本題主要考查了圓周角定理和切線的性質(zhì)定理的相關(guān)知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上,△ABC的頂點A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點B(1,3),將△ABC以點B為旋轉(zhuǎn)中心順時針方向旋轉(zhuǎn)90°得到△DBE,恰好有一反比例函數(shù)y= 圖像恰好過點D,則k的值為( )
A.6
B.﹣6
C.9
D.﹣9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.
(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當(dāng)k=0時,直線y=kx與x軸重合,求出此時 + 的值;
②試說明無論k取何值, + 的值都等于同一個常數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△AOB中,∠AOB=90°,AO=6厘米,BO=8厘米,分別以O(shè)B和OA所在直線為x軸,y軸建立平面直角坐標(biāo)系,如圖所示,動點M從點A開始沿AO方向以2厘米/秒的速度向點O移動,同時動點N從點O開始沿OB方向以4厘米/秒的速度向點B移動(其中一點到達(dá)終點時,另一點隨即停止移動).
(1)求過點A和點B的直線表達(dá)式;
(2)當(dāng)點M移動多長時間時,四邊形AMNB的面積最小?并求出四邊形AMNB面積的最小值;
(3)在點M和點N移動的過程中,是否存在以O(shè),M,N為頂點的三角形與△AOB相似?若存在,請求出點M 和點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的邊AB上一點,CN∥AB,DN交AC于點M,若MA=MC.
(1)求證:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四邊形ADCN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瑤寨中學(xué)食堂為學(xué)生提供了四種價格的午餐供其選擇,這四種價格分別是:A.3元,B.4元,C.5元,D.6元.為了了解學(xué)生對四種午餐的購買情況,學(xué)校隨機抽樣調(diào)查了甲、乙兩班學(xué)生某天購買四種午餐的情況,依據(jù)統(tǒng)計數(shù)據(jù)制成如下的統(tǒng)計圖表:
甲、乙兩班學(xué)生購買午餐的情況統(tǒng)計表
品種 | A | B | C | D |
甲 | 6 | 22 | 16 | 6 |
乙 | ? | 13 | 25 | 3 |
(1)求乙班學(xué)生人數(shù);
(2)求乙班購買午餐費用的中位數(shù);
(3)已知甲、乙兩班購買午餐費用的平均數(shù)為4.44元,從平均數(shù)和眾數(shù)的角度解答,哪個班購買的午餐價格較高?
(4)從這次接受調(diào)查的學(xué)生中,隨機抽查一人,恰好是購買C種午餐的學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點,且BE=CF,連接AF,DE交于點O.求證:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校園文化建設(shè)中,某學(xué)校原計劃按每班5幅訂購了“名人字畫”共90幅.由于新學(xué)期班數(shù)增加,決定從閱覽室中取若干幅“名人字畫”一起分發(fā),如果每班分4幅,則剩下17幅;如果每班分5幅,則最后一班不足3幅,但不少于1幅.
(1)該校原有的班數(shù)是多少個?
(2)新學(xué)期所增加的班數(shù)是多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,OB和OC分別平分∠ABC和∠ACB,過O作DE∥BC,分別交AB、AC于點D、E,若DE=5,BD=3,則線段CE的長為( 。
A. 3 B. 1 C. 2 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com