如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延長線于F,連接CD,給出四個結(jié)論:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB﹣BC=2FC;其中正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
D【考點】全等三角形的判定與性質(zhì);角平分線的性質(zhì);等腰直角三角形.
【分析】過E作EQ⊥AB于Q,作∠ACN=∠BCD,交AD于N,過D作DH⊥AB于H,根據(jù)角平分線性質(zhì)求出CE=EQ,DF=DH,根據(jù)勾股定理求出AC=AQ,AF=AH,根據(jù)等腰三角形的性質(zhì)和判定求出BQ=QE,即可求出③;根據(jù)三角形外角性質(zhì)求出∠CND=45°,證△ACN≌△BCD,推出CD=CN,即可求出②①;證△DCF≌△DBH,得到CF=BH,AF=AH,即可求出④.
【解答】解:如圖,
過E作EQ⊥AB于Q,
∵∠ACB=90°,AE平分∠CAB,
∴CE=EQ,
∵∠ACB=90°,AC=BC,
∴∠CBA=∠CAB=45°,
∵EQ⊥AB,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ,
∴∠QEB=45°=∠CBA,
∴EQ=BQ,
∴AB=AQ+BQ=AC+CE,
∴③正確;
作∠ACN=∠BCD,交AD于N,
∵∠CAD=∠CAB=22.5°=∠BAD,
∴∠ABD=90°﹣22.5°=67.5°,
∴∠DBC=67.5°﹣45°=22.5°=∠CAD,
∴∠DBC=∠CAD,
在△ACN和△BCD中,
,
∴△ACN≌△BCD,
∴CN=CD,AN=BD,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°﹣22.5°=22.5°=∠CAN,
∴AN=CN,
∴∠NCE=∠AEC=67.5°,
∴CN=NE,
∴CD=AN=EN=AE,
∵AN=BD,
∴BD=AE,
∴①正確,②正確;
過D作DH⊥AB于H,
∵∠FCD=∠CAD+∠CDA=67.5°,
∠DBA=90°﹣∠DAB=67.5°,
∴∠FCD=∠DBA,
∵AE平分∠CAB,DF⊥AC,DH⊥AB,
∴DF=DH,
在△DCF和△DBH中
,
∴△DCF≌△DBH,
∴BH=CF,
由勾股定理得:AF=AH,
∴====2,
∴AC+AB=2AF,
AC+AB=2AC+2CF,
AB﹣AC=2CF,
∵AC=CB,
∴AB﹣CB=2CF,
∴④正確.
故選D
【點評】本題主要考查了三角形的外角性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)和判定,直角三角形斜邊上中線性質(zhì),全等三角形的性質(zhì)和判定,等腰直角三角形性質(zhì)等知識點的理解和掌握,能綜合運用這些性質(zhì)進行推理是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,∠CAB=∠DBA,再添加一個條件,不一定能判定△ABC≌△BAD的是( )
A.AC=BD B.∠1=∠2 C.AD=BC D.∠C=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△A′B′C′;
(2)在直線l上找一點P(在答題紙上圖中標出),使PB+PC的長最短,這個最短長度的平方值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
勾股定理被譽為“幾何明珠”,在數(shù)學(xué)的發(fā)展歷程中占有舉足輕重的地位.如圖1是由邊長相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗證勾股定理.圖2是由圖1放入長方形內(nèi)得到的,∠BAC=90°,AB=3,AC=4,點D、E、F、G、H、I 都在長方形KLMJ的邊上,則長方形KLMJ的面積為( )
A.90 B.100 C.110 D.121
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com