作業(yè)寶在平行四邊形ABCD中,BC=2AB,E為BC中點,求∠AED的度數(shù).

解:取AD的中點F,連接EF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∵BC=2AB,E為BC中點,
∴AB=BE,
∴∠BAE=∠AEB,
∵BE=AF,
∴四邊形ABEF是菱形,
∴AB∥EF,
∴∠BAE=∠AEF,
∴∠AEF=∠AEB,
同理:∠FED=∠CED,
∴∠AED=∠AEF+∠FED=×180°=90°.
分析:首先取AD的中點F,連接EF,由BC=2AB,E為BC中點,易得四邊形ABEF是菱形,繼而可得∠AEF=∠AEB,∠FED=∠CED,則可求得∠AED的度數(shù).
點評:此題考查了平行四邊形的性質、菱形的判定與性質以及等腰三角形的性質.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F.試判斷AF與CE是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知如圖,在平行四邊形ABCD中,BN=DM,BE=DF.求證:四邊形MENF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鞍山一模)在平行四邊形ABCD中,∠DAB=60°,點E是AD的中點,點O是AB邊上一點,且AO=AE,過點E作直線HF交DC于點H,交BA的延長線于F,以OE所在直線為對稱軸,△FEO經(jīng)軸對稱變換后得到△F′EO,直線EF′交直線DC于點M.
(1)求證:AD∥OF′;
(2)若M點在點H右側,OA=4,求DH•DM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,AE⊥AD交BD于點E,CF⊥BC交BD于點F.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,∠B的平分線交AD于E,AE=10,ED=4,那么平行四邊形ABCD的周長是
48
48

查看答案和解析>>

同步練習冊答案