【題目】如圖,是垂直于水平面的建筑物,為測量的高度,小紅從建筑物底端出發(fā),沿水平方向行走了52米到達(dá)點(diǎn),然后沿斜坡前進(jìn),到達(dá)坡頂點(diǎn)處,.在點(diǎn)處放置測角儀,測角儀支架高度為0.8米,在點(diǎn)處測得建筑物頂端點(diǎn)的仰角為(點(diǎn),,,在同一平面內(nèi)),斜坡的坡度(或坡比),求建筑物的高度.(精確到個位)(參考數(shù)據(jù):)
【答案】建筑物的高度約為72米
【解析】
過點(diǎn)E作EM⊥AB,垂足為M,設(shè)DG=x,則CG=2.4x,利用勾股定理求出x的值,進(jìn)而可得出CG的長,故可得出EG的長.由矩形的判定定理得出四邊形EGBM是矩形,故可得出EM=BG,BM=EG,再由銳角三角函數(shù)的定義求出AM的長,進(jìn)一步即可求得AB.
解:過點(diǎn)E作EM⊥AB,垂足為M,延長ED交BC于G,
∵斜坡的坡度(或坡比),米,
∴設(shè)米,則米,
在中,,
解得
∴DG=20米,米,
∴米,米
∵,,
∴四邊形是矩形.
∴米,米.
在中,
∵
∴米
∴(米).
答:建筑物的高度約為72米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)P(m,n)是拋物線上的一個動點(diǎn).
(1)如圖1,過動點(diǎn)P作PB⊥x軸,垂足為B,連接PA,請通過測量或計(jì)算,比較PA與PB的大小關(guān)系:PA_____PB(直接填寫“>”“<”或“=”,不需解題過程);
(2)請利用(1)的結(jié)論解決下列問題:
①如圖2,設(shè)C的坐標(biāo)為(2,5),連接PC,AP+PC是否存在最小值?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,簡單說明理由;
②如圖3,過動點(diǎn)P和原點(diǎn)O作直線交拋物線于另一點(diǎn)D,若AP=2AD,求直線OP的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,點(diǎn),分別在邊,上,將沿直線折疊,點(diǎn)恰好落在邊上的點(diǎn)處,且.
(1)求的長;
(2)點(diǎn)是射線上的一個動點(diǎn),連接,,,的面積與的面積相等,
①當(dāng)點(diǎn)在線段上時,求的長;
②當(dāng)點(diǎn)在線段的延長線上時,________;
(3)將直線平移,平移后的直線與直線,直線分別交于點(diǎn)和點(diǎn),以線段為一邊作正方形,點(diǎn)與點(diǎn)在直線兩側(cè),連接當(dāng)時,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)部有若干個點(diǎn),則用這些點(diǎn)以及正方形ABCD的頂點(diǎn)A、B、C、D把原正方形分割成一些三角形(互相不重疊):
(1)填寫下表:
正方形ABCD內(nèi)點(diǎn)的個數(shù) | 1 | 2 | 3 | 4 | ... | n |
分割成三角形的個數(shù) | 4 | 6 | _____ | _____ | ... | _____ |
(2)原正方形能否被分割成2021個三角形?若能,求此時正方形ABCD內(nèi)部有多少個點(diǎn)?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形,,,…,按如圖所示的方式放置,點(diǎn),…和點(diǎn),…分別在直線和軸上.則點(diǎn)的縱坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠DAB=45°,AB=4,點(diǎn)P為線段AB上一動點(diǎn)(不與點(diǎn)A重合),過點(diǎn)P作PE⊥AB交射線AD于點(diǎn)E,沿PE將△APE折疊,點(diǎn)A的對稱點(diǎn)為點(diǎn)F,連接EF,DF,CF,當(dāng)△CDF為等腰三角形時,AP的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C,直線y=x﹣3經(jīng)過B,C兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P是第四象限內(nèi)拋物線上的動點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線BC于點(diǎn)M,連接AC,過點(diǎn)M作MN⊥AC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為t.
①求線段MN的長d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
②點(diǎn)Q是平面內(nèi)一點(diǎn),是否存在一點(diǎn)P,使以B,C,P,Q為頂點(diǎn)的四邊形為矩形?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某路燈在鉛垂面內(nèi)的示意圖,燈柱AB的高為13米,燈桿BC與燈柱AB的夾角∠B=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為20米,已知tan∠CDE=,tan∠CED=,求燈桿BC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,對角線、相交于點(diǎn),將直線繞點(diǎn)順時針旋轉(zhuǎn)一個角度(),分別交線段、于點(diǎn)、,已知,,連接.
(1)如圖①,在旋轉(zhuǎn)的過程中,請寫出線段與的數(shù)量關(guān)系,并證明;
(2)如圖②,當(dāng)時,請寫出線段與的數(shù)量關(guān)系,并證明;
(3)如圖③,當(dāng)時,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com