【題目】如圖,拋物線的頂點為,交軸于點,(點在點的右側(cè)),點在第一象限,且在拋物線部分上,軸于點

1)求該拋物線的表達式.

2)若,求的長.

【答案】1;(25

【解析】

1)已知拋物線頂點坐標(biāo),可得,,解出ac,即可求出拋物線解析式.

2)作PHOD,交OD于點H,CFPH,交PH于點F,設(shè)Pa),根據(jù),列出關(guān)于a的關(guān)系式,求出a,分別求出DHOH OD=OH+HD即可求解.

1)由題意,得,

由(1),得3),

把(3)代入(2),得

∴拋物線的表達式

故答案為:

2)作PHOD,交OD于點H,CFPH,交PH于點F,

設(shè)Pa,

由題意,得,

化簡,得

解得a=2,或

∵在拋物線部分上,

舍去

DH=2PF=23-a=2,OH==3

OD=OH+HD=3+2=5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx-3x軸交于A-1,0),B3,0)兩點,與y軸交于點C

1)求拋物線的解析式.

2)如圖,直線BC下方的拋物線上有一點D,過點DDEBC于點E,作DF平行x軸交直線BC于點F,求△DEF周長的最大值.

3)已知點M是拋物線的頂點,點Ny軸上一點,點Q是坐標(biāo)平面內(nèi)一點,若點P是拋物線上一點,且位于拋物線對稱軸的右側(cè),是否存在以點PM,N,Q為頂點且以PM為邊的正方形?若存在,請直接寫出點P的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+3與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,與x軸的另一個交點為C.

(1)求拋物線的解析式;

(2)點P是第一象限拋物線上的點,連接OP交直線AB于點Q.設(shè)點P的橫坐標(biāo)為m,PQ與OQ的比值為y,求y與m的關(guān)系式,并求出PQ與OQ的比值的最大值;

(3)點D是拋物線對稱軸上的一動點,連接OD、CD,設(shè)ODC外接圓的圓心為M,當(dāng)sinODC的值最大時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點A4,0)和點D-10),與y軸交于點C,過點CBC平行于x軸交拋物線于點B,連接AC
1)求這個二次函數(shù)的表達式;
2)點M從點O出發(fā)以每秒2個單位長度的速度向點A運動;點N從點B同時出發(fā),以每秒1個單位長度的速度向點C運動,其中一個動點到達終點時,另一個動點也隨之停動,過點NNQ垂直于BCAC于點Q,連結(jié)MQ
①求△AQM的面積S與運動時間t之間的函數(shù)關(guān)系式,寫出自變量的取值范圍;當(dāng)t為何值時,S有最大值,并求出S的最大值;
②是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q,設(shè)A、P兩點間的距離為x

探究:

1)當(dāng)點Q在邊CD上時,線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察到的結(jié)論;

2)當(dāng)點Q在邊CD上時,設(shè)四邊形PBCQ的面積為y,求yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍;(3)當(dāng)點P在線段AC上滑動時,△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點Q的位置,并求出相應(yīng)x的值;如果不可能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將RtABC繞直角頂點A,沿順時針方向旋轉(zhuǎn)后得到RtAB1C1,當(dāng)點B1恰好落在斜邊BC的中點時,則∠B1AC=(

A.25°B.30°C.40°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時拋擲兩枚質(zhì)地均勻的正四面體骰子,骰子各個面的點數(shù)分別是14的整數(shù),把這兩枚骰子向下的面的點數(shù)記為(a,b),其中第一枚骰子的點數(shù)記為a,第二枚骰子的點數(shù)記為b

1)用列舉法或樹狀圖法求(ab)的結(jié)果有多少種?

2)求方程x2+bx+a0有實數(shù)解的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,函數(shù)的圖象與一次函數(shù)y=kx-k的圖象的交點為A(m,2).

(1)求一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)y=kx-k的圖象與y軸交于點B,若P是x軸上一點, 且滿足PAB的面積是4,

直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為3,∠BAD60°,點E、F在對角線AC上(點E在點F的左側(cè)),且EF1,則DE+BF最小值為_____

查看答案和解析>>

同步練習(xí)冊答案