【題目】在平面直角坐標(biāo)系中,點(diǎn),,過第四象限內(nèi)一動(dòng)點(diǎn)作軸的垂線,垂足為,且,點(diǎn)、分別在線段和軸上運(yùn)動(dòng),則的最小值是( )
A.B.C.D.
【答案】B
【解析】
先求出直線AB的解析式,再根據(jù)已知條件求出點(diǎn)C的運(yùn)動(dòng)軌跡,由一次函數(shù)的圖像及性質(zhì)可知:點(diǎn)C的運(yùn)動(dòng)軌跡和直線AB平行,過點(diǎn)C作CE⊥AB交x軸于P,交AB于E,過點(diǎn)M(0,-3)作MN⊥AB于N根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時(shí)CE即為的最小值,且MN=CE,然后利用銳角三角函數(shù)求MN即可求出CE.
解:設(shè)直線AB的解析式為y=ax+b(a≠0)
將點(diǎn),代入解析式,得
解得:
∴直線AB的解析式為
設(shè)C點(diǎn)坐標(biāo)為(x,y)
∴CD=x,OD=-y
∵
∴
整理可得:,即點(diǎn)C的運(yùn)動(dòng)軌跡為直線的一部分
由一次函數(shù)的性質(zhì)可知:直線和直線平行,
過點(diǎn)C作CE⊥AB交x軸于P,交AB于E,過點(diǎn)M(0,-3)作MN⊥AB于N根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時(shí)CE即為的最小值,且MN=CE,如圖所示
在Rt△AOB中,AB=,sin∠BAO=
在Rt△AMN中,AM=6,sin∠MAN=
∴CE=MN=,即的最小值是.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MAN=90°,點(diǎn)C在邊AM上,AC=4,點(diǎn)B為邊AN上一動(dòng)點(diǎn),連接BC,△A′BC與△ABC關(guān)于BC所在直線對(duì)稱,點(diǎn)D,E分別為AC,BC的中點(diǎn),連接DE并延長(zhǎng)交A′B所在直線于點(diǎn)F,連接A′E.當(dāng)△A′EF為直角三角形時(shí),AB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的邊長(zhǎng)是2,是高所在直線上的一個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接,則在點(diǎn)運(yùn)動(dòng)過程中,線段長(zhǎng)度的最小值是( )
A.B.1C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)為邊的中點(diǎn),點(diǎn)在上,,過點(diǎn)作交于點(diǎn).下列結(jié)論:①;②;③;④.正確的是( ).
A.①②B.①③C.①③④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李在景區(qū)銷售一種旅游紀(jì)念品,已知每件進(jìn)價(jià)為6元,當(dāng)銷售單價(jià)定為8元時(shí),每天可以銷售200件.市場(chǎng)調(diào)查反映:銷售單價(jià)每提高1元,日銷量將會(huì)減少10件,物價(jià)部門規(guī)定:銷售單價(jià)不能超過12元,設(shè)該紀(jì)念品的銷售單價(jià)為x(元),日銷量為y(件),日銷售利潤(rùn)為w(元).
(1)求y與x的函數(shù)關(guān)系式.
(2)要使日銷售利潤(rùn)為720元,銷售單價(jià)應(yīng)定為多少元?
(3)求日銷售利潤(rùn)w(元)與銷售單價(jià)x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時(shí),日銷售利潤(rùn)最大,并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以為直徑作半圓,點(diǎn)是半圓弧的中點(diǎn),點(diǎn)是上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、重合),交于點(diǎn),延長(zhǎng)、交于點(diǎn),過點(diǎn)作,垂足為.
(1)求證:是的切線;
(2)若的半徑為1,當(dāng)點(diǎn)運(yùn)動(dòng)到的三等分點(diǎn)時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是邊上的一點(diǎn),連接,是邊上的中點(diǎn),過點(diǎn)作的平行線交的延長(zhǎng)線于點(diǎn),且,連接.
(1)求證:;
(2)如果,試判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)規(guī)定,我市將垃圾分為了四類:可回收物、易腐垃圾、有害垃圾和其他垃圾四大類. 現(xiàn)有投放這四類垃圾的垃圾桶各1個(gè),若將用不透明垃圾袋分類打包好的兩袋不同垃圾隨機(jī)投進(jìn)兩個(gè)不同的垃圾桶,投放正確的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在圓O上,BE⊥CD垂足為E,CB平分∠ABE,連接BC
(1)求證:CD為⊙O的切線;
(2)若cos∠CAB=,CE=,求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com