已知:如圖,ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于x的一元二次方程x2-7x+12=0的兩個根,且OA>OB。
(1)求cos∠ABC的值;
(2)若E是x軸正半軸上的一點,且S△AOE=,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO 是否相似,同時說明理由;
(3)點M在平面直角坐標系中,點F在直線AB上,如果以A、C、F、M為頂點的四邊形為菱形,請直接寫出F點坐標。
解:(1)解方程x2-7x+12=0,
得x1=4,x2=3,
∵OA> OB,
∴OA=4,OB=3,
在Rt△AOB中,由勾股定理得
 ;
(2)
∵點E在軸x上,S△AOE=,
AO·OE=
∴OE=
∵點E在x軸的正半軸上,
∴E(,0),
由已知可知D(6,4),
設經(jīng)過D、E兩點的直線的解析式為y= kx+b,
將D、E兩點的坐標代人得,解得
所以,過D.E兩點的直線的解析式為y=x-,
在△AOE中,∠AOE=90°,OA=4,OE=,
在△AOD中,∠OAD=90°,OA=4,AD=6,
∵OE/OA=OA/AD,
∴△AOE∽△DAO
(3)滿足條件的點有4個:
 。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、已知:如圖,?ABCD中,對角線AC、BD交于點O.
(1)請問圖中有幾對全等三角形?
(2)此平行四邊形是什么四邊形時,圖中有8對全等三角形?
(3)此平行四邊形是什么四邊形時,圖中有12對全等三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、已知:如圖梯形ABCD中,AD∥BC,AB=CD,AC與BD相交于點O.
(1)寫出圖中兩對全等三角形和一個等腰三角形;
(2)選擇一對你所寫的全等三角形證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、已知:如圖,?ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、已知:如圖,?ABCD.
(1)畫出?A1B1C1D1使?A1B1C1D1與?ABCD關于直線MN對稱;
(2)畫出?A2B2C2D2,使?A2B2C2D2與?ABCD關于點O中心對稱;
(3)?A1B1C1D1與?A2B2C2D2是對稱圖形嗎?若是,請在圖上畫出對稱軸或對稱中心.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,?ABCD中,P為AB上任意一點,PQ∥AC交BC于Q.寫出圖中的兩個三角形,同時滿足條件:這兩個三角形面積相等,且每個三角形的面積都小于?ABCD面積的一半.并證明你的結論.

查看答案和解析>>

同步練習冊答案