如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.
科目:初中數(shù)學 來源: 題型:
將一次函數(shù)y=kx-1的圖象向上平移k個單位后恰好經(jīng)過點A(3,2+k).
(1)求k的值;
(2)若一條直線與函數(shù)y=kx-1的圖象平行,且與兩個坐標軸所圍成的三角形的面積為,求該直線的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”(如圖(1)).圖(2)由弦圖變化得到,它是由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為、、.若正方形EFGH的邊長為2,則= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某校校園超市老板到批發(fā)中心選購甲、乙兩種品牌的文具盒,乙品牌的進貨單價是甲品牌進貨單價的2倍,考慮各種因素,預計購進乙品牌文具盒的數(shù)量y(個)與甲品牌文具盒的數(shù)量x(個)之間的函數(shù)關系如圖所示.當購進的甲、乙品牌的文具盒中,甲有120個時,購進甲、乙品牌文具盒共需7200元.
(1)根據(jù)圖象,求y與x之間的函數(shù)關系式;
(2)求甲、乙兩種品牌的文具盒進貨單價;
(3)若該超市每銷售1個甲種品牌的文具盒可獲利4元,每銷售1個乙種品牌的文具盒可獲利9元,根據(jù)學生需求,超市老板決定,準備用不超過6300元購進甲、乙兩種品牌的文具盒,且這兩種品牌的文具盒全部售出后獲利不低于1795元,問該超市有幾種進貨方案?哪種方案能使獲利最大?最大獲利為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,點C是線段AB的中點.
(1)若點D在線段CB上,且DB=3.5cm,AD=6.5cm,求線段CD的長度;
(2)若將(1)中的點“D在線段CB上”改為“點D在直線CB上”,其它條件不變,請畫出相應的示意圖,并求出此時線段CD的長度;
(3)若線段AB=12 cm,點C在AB上,點D、E分別是AC和BC的中點.
①當點C恰是AB中點時,則DE= cm.
②當AC=4 cm,時,求DE的長;
③當點C在線段AB上運動時(點C與A、B重合除外),求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com