(2010.十堰)已知關(guān)于x的方程mx2-(3m-1)x+2m-2=0
(1)求證:無論m取任何實數(shù)時,方程恒有實數(shù)根.
(2)若關(guān)于x的二次函數(shù)y= mx2-(3m-1)x+2m-2的圖象與x軸兩交點間的距離為2時,求拋物線的解析式.
(3)在直角坐標(biāo)系xoy中,畫出(2)中的函數(shù)圖象,結(jié)合圖象回答問題:當(dāng)直線y=x+b與(2)中的函數(shù)圖象只有兩個交點時,求b的取值范圍.
解:(1)分兩種情況討論:
①當(dāng)m=0 時,方程為x-2=0,∴x=2 方程有實數(shù)根
②當(dāng)m≠0時,則一元二次方程的根的判別式
△=[-(3m-1)]2-4m(2m-2)=m2+2m+1=(m+1)2≥0
不論m為何實數(shù),△≥0成立,∴方程恒有實數(shù)根
綜合①②,可知m取任何實數(shù),方程mx2-(3m-1)x+2m-2=0恒有實數(shù)根.
(2)設(shè)x1,x2為拋物線y= mx2-(3m-1)x+2m-2與x軸交點的橫坐標(biāo).
則有x1+x2=,x1·x2=
由| x1-x2|====,
由| x1-x2|=2得=2,∴=2或=-2
∴m=1或m=
∴所求拋物線的解析式為:y1=x2-2x或y2=x2+2x-
即y1= x(x-2)或y2=(x-2)(x-4)其圖象如右圖所示.
(3)在(2)的條件下,直線y=x+b與拋物線y1,y2組成的圖象只有兩個交點,結(jié)合圖象,求b的取值范圍.
,當(dāng)y1=y時,得x2-3x-b=0,△=9+4b=0,解得b=-;
同理,可得△=9-4(8+3b)=0,得b=-.
觀察函數(shù)圖象可知當(dāng)b<-或b>-時,直線y=x+b與(2)中的圖象只有兩個交點.
由
當(dāng)y1=y2時,有x=2或x=1
當(dāng)x=1時,y=-1
所以過兩拋物線交點(1,-1),(2,0)的直線y=x-2,
綜上所述可知:當(dāng)b<-或b>-或b=-2時,直線y=x+b與(2)中的圖象只有兩個交點.
科目:初中數(shù)學(xué) 來源: 題型:
(2010.十堰)如圖所示,直線AB與反比例函數(shù)圖像相交于A,B兩點,已知A(1,4).
(1)求反比例函數(shù)的解析式;
(2)連結(jié)OA,OB,當(dāng)△AOB的面積為時,求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年湖北省十堰市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(2010.十堰)某鄉(xiāng)鎮(zhèn)中學(xué)數(shù)學(xué)活動小組,為測量數(shù)學(xué)樓后面的山高AB,用了如下的方法.如圖所示,在教學(xué)樓底C處測得山頂A的仰角為60°,在教學(xué)樓頂D處,測得山頂A的仰角為45°.已知教學(xué)樓高CD=12米,求山高AB.(參考數(shù)據(jù)=1.73,=1.41,精確到0.1米,化簡后再代入?yún)⒖紨?shù)據(jù)運算)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com