如圖,在平面直角坐標(biāo)系xOy中,已知矩形ABCD的兩個(gè)頂點(diǎn)B、C的坐標(biāo)分別是B(1,0)、C(3,0).直線AC與y軸交于點(diǎn)G(0,6).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn) Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P、Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
(1)求直線AC的解析式;
(2)當(dāng)t為何值時(shí),△CQE的面積最大?最大值為多少?
(3)在動(dòng)點(diǎn)P、Q運(yùn)動(dòng)的過程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使得以C、Q、E、H為頂點(diǎn)的四邊形是菱形?

解:(1)設(shè)直線AC的解析式為y=kx+b.
∵直線AC經(jīng)過G(0,6)、C(3,0)兩點(diǎn),

解這個(gè)方程組,得
∴直線AC的解析式為y=-2x+6.
(2)當(dāng)x=1時(shí),y=4.
∴A(1,4).
∵AP=CQ=t,
∴點(diǎn)P(1,4-t).
將y=4-t代入y=-2x+6中,得點(diǎn)E的橫坐標(biāo)為x=
∴點(diǎn)E到CD的距離為
∴S△CQE===
∴當(dāng)t=2時(shí),S△CQE最大,最大值為1.
(3)過點(diǎn)E作FM∥DC,交AD于F,交BC于M.
當(dāng)點(diǎn)H在點(diǎn)E的下方時(shí),連結(jié)CH.
∵EM=4-t,
∴HM=4-2t.


∵四邊形CQEH為菱形,
∴CH=CQ=t.
在Rt△HMC中,由勾股定理得CH2=HM2+CM2

整理得 13t2-72t+80=0.
解得 ,t2=4(舍).
∴當(dāng)時(shí),以C,Q,E,H為頂點(diǎn)的四邊形是菱形.
當(dāng)點(diǎn)H在點(diǎn)E的上方時(shí),同理可得當(dāng)時(shí).以C,Q,E,H為頂點(diǎn)的四邊形是菱形.
∴t的值是
分析:(1)設(shè)直線AC的解析式為y=kx+b,將G(0,6)、C(3,0)兩點(diǎn)代入,即可求出k、b的值,從而得到一次函數(shù)解析式.
(2)將△CQE的底和高用含x的代數(shù)式表示出來,列出關(guān)于x的二次函數(shù)解析式,求最值即可.
(3)求出CM的關(guān)于t的表達(dá)式,根據(jù)四邊形CQEH為菱形求得H=CQ=t,再利用勾股定理求出t的值即可.
點(diǎn)評(píng):本題考查了一次函數(shù)綜合題,包括待定系數(shù)法求一次函數(shù)解析式、二次函數(shù)最值、菱形的性質(zhì),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案