【題目】綜合與實踐
正方形內(nèi)“奇妙點”及性質(zhì)探究
定義:如圖1,在正方形中,以為直徑作半圓,以為圓心,為半徑作,與半圓交于點.我們稱點為正方形的一個“奇妙點”.過奇妙點的多條線段與正方形無論是位置關(guān)系還是數(shù)量關(guān)系,都具有不少優(yōu)美的性質(zhì)值得探究.
性質(zhì)探究:如圖2,連接并延長交于點,則為半圓的切線.
證明:連接.
由作圖可知,,
又.
,∴是半圓的切線.
問題解決:
(1)如圖3,在圖2的基礎(chǔ)上,連接.請判斷和的數(shù)量關(guān)系,并說明理由;
(2)在(1)的條件下,請直接寫出線段之間的數(shù)量關(guān)系;
(3)如圖4,已知點為正方形的一個“奇妙點”,點為的中點,連接并延長交于點,連接并延長交于點,請寫出和的數(shù)量關(guān)系,并說明理由;
(4)如圖5,已知點為正方形的四個“奇妙點”.連接,恰好得到一個特殊的“趙爽弦圖”.請根據(jù)圖形,探究并直接寫出一個不全等的幾何圖形面積之間的數(shù)量關(guān)系.
【答案】(1),理由見解析;(2);(3),理由見解析;(4)答案不唯一,如:的面積等于正方形的面積;正方形的面積等于正方形面積的等.
【解析】
(1)先提出猜想,在圖2以及上面結(jié)論的基礎(chǔ)上,根據(jù)全等三角形的性質(zhì)、四邊形的內(nèi)角和、鄰補角的性質(zhì)可得出,再由邊邊邊定理可證得,然后利用全等三角形的性質(zhì)、等式性質(zhì)可得證結(jié)論;
(2)由(1)可知、,根據(jù)全等三角形的性質(zhì)、線段的和差即可得到結(jié)論;
(3)先提出猜想,添加輔助線構(gòu)造出直角三角形,由(1)可知,則其正切值相等,再根據(jù)正方形的性質(zhì)即可得證結(jié)論;
(4)根據(jù)前面的結(jié)論結(jié)合趙爽弦圖可證得
,即可提出猜想.
解:(1)結(jié)論:
理由如下:
∵
∴,,
∴
∵
∴
在和中
∵,
∴
∴
∵
∴;
(2)∵由(1)可知,、
∴,
∵
∴
∴線段、、之間的數(shù)量關(guān)系是;
(3)結(jié)論:
理由:連接、,如圖:
由(1)可知,
∵
∴
∵點為的中點
∴
∴
∵四邊形是正方形
∴
∴;
(4)延長交于點,連接、,如圖:
∵由前面的結(jié)論可知
∴
∵此圖為趙爽弦圖即
∴
同理可得、、
∵四邊形是正方形
∴
∴
∴在和中,
∴
∴
∴
∴
∴答案不唯一,例如,的面積等于正方形的面積;正方形的面積等于正方形面積的等等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)(k≠0)的圖象交于A、B兩點,與x軸交于點C,過點A作AH⊥x軸于點H,點O是線段CH的中點,AC=,cos∠ACH=,點B的坐標為(4,n)
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(1,0),點P為斜邊OB上的一動點,則PA+PC的最小值_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:兩個相似等腰三角形,如果它們的底角有一個公共的頂點,那么把這兩個三角形稱為“關(guān)聯(lián)等腰三角形”.如圖,在與中, ,且所以稱與為“關(guān)聯(lián)等腰三角形”,設(shè)它們的頂角為,連接,則稱會為“關(guān)聯(lián)比".
下面是小穎探究“關(guān)聯(lián)比”與α之間的關(guān)系的思維過程,請閱讀后,解答下列問題:
[特例感知]
當與為“關(guān)聯(lián)等腰三角形”,且時,
①在圖1中,若點落在上,則“關(guān)聯(lián)比”=
②在圖2中,探究與的關(guān)系,并求出“關(guān)聯(lián)比”的值.
[類比探究]
如圖3,
①當與為“關(guān)聯(lián)等腰三角形”,且時,“關(guān)聯(lián)比”=
②猜想:當與為“關(guān)聯(lián)等腰三角形”,且時,“關(guān)聯(lián)比”= (直接寫出結(jié)果,用含的式子表示)
[遷移運用]
如圖4, 與為“關(guān)聯(lián)等腰三角形”.若點為邊上一點,且,點為上一動點,求點自點運動至點時,點所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某村啟動“脫貧攻堅”項目,根據(jù)當?shù)氐牡乩項l件,要在一座高為1000m的上種植一種經(jīng)濟作物.農(nóng)業(yè)技術(shù)人員在種植前進行了主要相關(guān)因素的調(diào)查統(tǒng)計,結(jié)果如下:
①這座山的山腳下溫度約為22°C,山高h(單位:m)每增加100m,溫度T(單位:°C)下降約0.5°C;
②該作物的種植成活率p受溫度T影響,且在19°C時達到最大.大致如表:
溫度T°C | 21 | 20.5 | 20 | 19.5 | 19 | 18.5 | 18 | 17.5 |
種植成活率p | 90% | 92% | 94% | 96% | 98% | 96% | 94% | 92% |
③該作物在這座山上的種植量w受山高h影響,大致如圖1:
(1)求T關(guān)于h的函數(shù)解析式,并求T的最小值;
(2)若要求該作物種植成活率p不低于92%,根據(jù)上述統(tǒng)計結(jié)果,山高h為多少米時該作物的成活量最大?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是線段上一點,,以點為圓心,的長為半徑作⊙,過點作的垂線交⊙于,兩點,點在線段的延長線上,連接交⊙于點,以,為邊作.
(1)求證:是⊙的切線;
(2)若,求四邊形與⊙重疊部分的面積;
(3)若,,連接,求和的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,AB=2,M為邊AB的中點,N為邊BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE、CE,當△CDE為等腰三角形時,BN的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,拋物線與軸交于點兩點,與軸交于點,直線經(jīng)過點,與拋物線另一個交點為,點是拋物線上的一個動點,過點作軸于點,交直線于點
(1)求拋物線的解析式
(2)當點在直線上方,且是以為腰的等腰三角形時,求的坐標
(3)如圖2所示,若點為對稱軸右側(cè)拋物線上一點,連接,以為直角頂點,線段為較長直角邊,構(gòu)造兩直角邊比為的,是否存在點,使點恰好落在直線上?若存在,請直接寫出相應(yīng)點的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等邊△ABC中,AB=6cm,動點P從點A出發(fā)以1cm/s的速度沿AB勻速運動,動點Q同時從點C出發(fā)以同樣的速度沿BC的延長線方向勻速運動,當點P到達點B時,點P、Q同時停止運動.設(shè)運動時間為t(s),過點P作PE⊥AC于E,PQ交AC邊于D,線段BC的中點為M,連接PM.
(1)當t為何值時,△CDQ與△MPQ相似;
(2)在點P、Q運動過程中,點D、E也隨之運動,線段DE的長度是否會發(fā)生變化?若發(fā)生變化,請說明理由,若不發(fā)生變化,求DE的長;
(3)如圖2,將△BPM沿直線PM翻折,得△B'PM,連接AB',當t為何值時,AB'的值最小?并求出最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com