在同坐標(biāo)系中,函數(shù)(k≠0)與y=kx+k(k≠0)在同一坐標(biāo)系中的大致圖象是( )
A.
B.
C.
D.
【答案】分析:首先由四個圖象中一次函數(shù)的圖象與y軸的交點在正半軸上,確定k的取值范圍,然后根據(jù)k的取值范圍得出反比例函數(shù)(k≠0)的圖象.
解答:解:由一次函數(shù)的圖象與y軸的交點在正半軸上可知k>0,故函數(shù)y=kx+k的圖象過一、二、三象限,反比例函數(shù)經(jīng)過第一、三象限,所以可以排除A,B,D.
故選C.
點評:本題主要考查了反比例函數(shù)的圖象性質(zhì)和一次函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)才能靈活解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(-3,0)、(0,3).
(1)一次函數(shù)圖象上的兩點P、Q在直線AB的同側(cè),且直線PQ與y軸交點的縱坐標(biāo)大于3,若△PAB與△QAB的面積都等于3,求這個一次函數(shù)的解析式;
(2)二次函數(shù)的圖象經(jīng)過點A、B,其頂點C在x軸的上方且在直線PQ上,求這個二次函數(shù)的解析式;
(3)若使(2)中所確定的拋物線的開口方向不變,頂點C在直線PQ上運動,當(dāng)點C運動到點精英家教網(wǎng)C′時,拋物線在x軸上截得的線段長為6,求點C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中有一塊三角板GEF按圖1放置,其中∠GEF=60°,∠G=90°,EF=4.隨后三角板的點E沿y軸向點O滑動,同時點F在x軸的正半軸上也隨之滑動.當(dāng)點E到達(dá)點O時,停止滑動.
(1)在圖2中,利用直角三角形外接圓的性質(zhì)說明點O、E、G、F四點在同一個圓上,并在圖2中用尺規(guī)方法作出該圓,(不寫作法,保留作圖痕跡);
(2)滑動過程中直線OG的函數(shù)表達(dá)式能確定嗎?若能,請求出它的表達(dá)式;若不能,請說明理由;
(3)求出滑動過程中點G運動的路徑的總長;
(4)若將三角板GEF換成一塊∠G=90°,∠GEF=α的硬紙板,其它條件不變,試用含α的式子表示點G運動的路徑的總長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在同坐標(biāo)系中,函數(shù)y=
k
x
(k≠0)與y=kx+k(k≠0)在同一坐標(biāo)系中的大致圖象是( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•瑞安市模擬)如圖,在直角坐標(biāo)系中,點C(
3
,0),點D(0,1),CD的中垂線交CD于點E,交y軸于點B,點P從點C出發(fā)沿CO方向以每秒2
3
個單位的速度運動,同時點Q從原點O出發(fā)沿OD方向以每秒1個單位的速度向點D運動,當(dāng)點Q到達(dá)點D時,點P,Q同時停止運動,設(shè)運動的時間為秒.
(1)求出點B的坐標(biāo);
(2)當(dāng)t為何值時,△POQ與△COD相似?
(3)當(dāng)點P在x軸負(fù)半軸上時,記四邊形PBEQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(4)在點P、Q的運動過程中,將△POQ繞點O旋轉(zhuǎn)180°,點P的對應(yīng)點P′,點Q的對應(yīng)點Q′,當(dāng)線段P′Q′與線段BE有公共點時,拋物線y=ax2+1經(jīng)過P′Q′的中點,此時的拋物線與x軸正半軸交于點M.由已知,直接寫出:①a的取值范圍為
-16≤a≤-2
-16≤a≤-2
;②點M移動的平均速度是
每秒(
3
2
2
-
3
4
)
個單位
每秒(
3
2
2
-
3
4
)
個單位

查看答案和解析>>

同步練習(xí)冊答案