【題目】如圖:在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),點(diǎn)表示數(shù)是最大的負(fù)整數(shù),且滿足.
(1)a=________,b=________,c=________.
(2)若將數(shù)軸折疊,使得點(diǎn)與點(diǎn)重合,則點(diǎn)與數(shù)________表示的點(diǎn)重合;
(3)點(diǎn)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒2個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)秒鐘過(guò)后,若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,則________,________.(用含的代數(shù)式表示)
(4)的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值。
【答案】(1)-3;-1;5;(2)3;(3),;(4)的值為定值16.
【解析】
(1)根據(jù)b為最大的負(fù)整數(shù)可得出b的值,再根據(jù)絕對(duì)值以及偶次方的非負(fù)性即可得出a、c的值;
(2)根據(jù)折疊的性質(zhì)結(jié)合a、b、c的值,即可找出與點(diǎn)B重合的數(shù);
(3)根據(jù)運(yùn)動(dòng)的方向和速度結(jié)合a、b、c的值,即可找出t秒后點(diǎn)A、B、C分別表示的數(shù),利用兩點(diǎn)間的距離即可求出AB、BC的值;
(4)將(3)的結(jié)論代入3BC-AB中,可得出3BC-AB為定值16,此題得解.
(1)∵是最大的負(fù)整數(shù),且滿足,
∴,,,
∴,.
故答案為:-3;-1;5.
(2).
故答案為:3.
(3)t秒鐘過(guò)后,點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,點(diǎn)C表示的數(shù)為,
∴,.
故答案為:,.
(4)∵,,
∴.
∴的值為定值16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提倡節(jié)約用電,某地區(qū)規(guī)定每月用電量不超過(guò) a 千瓦·時(shí),居民生活用電基本價(jià)格為每千瓦時(shí) 0.5 元;若每月用電量超過(guò) a 千瓦·時(shí),則超過(guò)部分按基本電價(jià)提高 20%收費(fèi).居住此地的老李家二月份用電 120 千瓦·時(shí),所交的電費(fèi)為 66 元.
(1)求 a 的值;
(2)老李登錄當(dāng)?shù)貒?guó)家電網(wǎng)網(wǎng)絡(luò)平臺(tái)繳費(fèi)后彈出一個(gè)對(duì)話框:您的家庭一月份和二月份的平均電費(fèi)不超過(guò)0.54 元/千瓦·時(shí),評(píng)為“節(jié)能小家庭”.試計(jì)算老李家一月份的用電量的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在拋物線上,直線⊥y軸于點(diǎn)M,AC⊥于點(diǎn)C,以AC為對(duì)角線作矩形ABCD,若點(diǎn)M的坐標(biāo)為(0,6),則BD的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列函數(shù)圖象上任取不同兩點(diǎn)P(x1,y1),Q(x2,y2),一定能使(x2﹣x1)(y2﹣y1)>0成立的是( 。
A.y=﹣2x+1(x<0)B.y=﹣x2﹣2x+8(x<0)
C.y=(x>0)D.y=2x2+x﹣6(x>0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn)(點(diǎn)C不與A,B重合),連接CA,CB.∠ACB的平分線CD與⊙O交于點(diǎn)D.
(1)求∠ACD的度數(shù);
(2)探究CA,CB,CD三者之間的等量關(guān)系,并證明;
(3)E為⊙O外一點(diǎn),滿足ED=BD,AB=5,AE=3,若點(diǎn)P為AE中點(diǎn),求PO的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已致點(diǎn)的坐標(biāo)為,點(diǎn)在軸的正半軸上,且.過(guò)點(diǎn)作,交軸于點(diǎn);過(guò)點(diǎn)作,交軸于點(diǎn);過(guò)點(diǎn)作,交軸于點(diǎn);……;按此規(guī)律進(jìn)行下去,則點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸相交于兩點(diǎn)(點(diǎn)位于點(diǎn)的左側(cè)),與軸相交于點(diǎn),是拋物線的頂點(diǎn),直線是拋物線的對(duì)稱軸,且點(diǎn)的坐標(biāo)為.
(1)求拋物線的解析式.
(2)已知為線段上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn).若的面積為.
①求與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
②當(dāng)取得最值時(shí),求點(diǎn)的坐標(biāo).
(3)在(2)的條件下,在線段上是否存在點(diǎn),使為等腰三角形?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是直徑AB上的一點(diǎn),AB=6,CP⊥AB交半圓于點(diǎn)C,以BC為直角邊構(gòu)造等腰Rt△BCD,∠BCD=90°,連接OD.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段AP,BC,OD的長(zhǎng)度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)對(duì)于點(diǎn)P在AB上的不同位置,畫(huà)圖、測(cè)量,得到了線段AP,BC,OD的長(zhǎng)度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置… | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | … |
BC | 6.00 | 5.48 | 4.90 | 4.24 | 3.46 | 2.45 | … |
OD | 6.71 | 7.24 | 7.07 | 6.71 | 6.16 | 5.33 | … |
在AP,BC,OD的長(zhǎng)度這三個(gè)量中,確定________的長(zhǎng)度是自變量,________的長(zhǎng)度和________的長(zhǎng)度都是這個(gè)自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫(huà)出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)OD=2BC時(shí),線段AP的長(zhǎng)度約為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)三位數(shù)t=(其中a、b、c不全相等且都不為0),重新排列各數(shù)位上的數(shù)字必可得到一個(gè)最大數(shù)和一個(gè)最小數(shù),此最大數(shù)和最小數(shù)的差叫做原數(shù)的差數(shù),記為T(t).例如,539的差數(shù)T(539)=953﹣359=594.
(1)根據(jù)以上方法求出T(268)= ,T(513)= ;
(2)已知三位數(shù)(其中a>b>1)的差數(shù)T()=495,且各數(shù)位上的數(shù)字之和為3的倍數(shù),求所有符合條件的三位數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com