如圖,A、B為⊙O上的點(diǎn),AC是弦,CD是⊙O的切線,C為切點(diǎn),AD⊥CD于點(diǎn)D.若AC為∠BAD的平分線.

求證:(1)AB為⊙O的直徑

(2)AC2=AB·AD

答案:
解析:

  證明:(1)連結(jié)BC

  AC平分∠BAD

  ∴∠DAC=∠CAB

  又CD切⊙O于點(diǎn)C

  ∴∠ACD=∠B(弦切角定理)

  ∵AD⊥CD

  ∴∠ACD+∠DAC=90°

  即∠B+∠CAB=90°

  ∴∠BCA=90°

  ∴AB是⊙O的直徑(90°圓周角所對(duì)弦是直徑)

  (2)∵∠ACD=∠B

  ∠DAC=∠CAB

  ∴△ACD∽△ABC

  ∴

  ∴AC2=AB·AD


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,E、F為AD上兩點(diǎn),且AF=DE,AB=DC,BE=CF.
求證:(1)△ABE≌△DCF;
(2)BF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC中D為AC上一點(diǎn),CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E為垂足,連接AE.
求證:(1)ED=DA;
(2)∠EBA=∠EAB
(3)BE2=AD•AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知線段AC∥y軸,點(diǎn)B在第一象限,且AO平分∠BAC,AB交y軸與G,連OB、OC.
(1)判斷△AOG的形狀,并予以證明;
(2)若點(diǎn)B、C關(guān)于y軸對(duì)稱,求證:AO⊥BO;
(3)在(2)的條件下,如圖2,點(diǎn)M為OA上一點(diǎn),且∠ACM=45°,BM交y軸于P,若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,D、C為AF上兩點(diǎn),AD=CF,AB=DE,要使得△ABC≌△DEF,需補(bǔ)充邊的條件為
BC=EF
BC=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,D(0,-3),M(4,-3),直角三角形ABC的邊與x軸分別交于O、G兩點(diǎn),與直線DM分別交于E、F點(diǎn).
(1)將直角三角形ABC如圖1位置擺放,請(qǐng)寫(xiě)出∠CEF與∠AOG之間的等量關(guān)系:
∠CEF=90°+∠AOG
∠CEF=90°+∠AOG

(2)將直角三角形ABC如圖2位置擺放,N為AC上一點(diǎn),∠NED+∠CEF=180°,請(qǐng)寫(xiě)出∠NEF與∠AOG之間的等量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案