已知關(guān)于x的方程x2-2(k-1)x+k2=0有兩個(gè)實(shí)數(shù)根x1、x2
(1)求k的取值范圍;
(2)若函數(shù)y=x1+x2-x1x2+1,求函數(shù)y的最大值.
【答案】分析:(1)根據(jù)△的意義由方程x2-2(k-1)x+k2=0有兩個(gè)實(shí)數(shù)根x1、x2得到△≥0,即4(k-1)2-4k2≥0,解不等式即可得到k的取值范圍;
(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系得到x1+x2=2(k-1),x1x2=k2,則y=x1+x2-x1x2+1=2(k-1)-k2+1=-(k-1)2,利用二次函數(shù)的性質(zhì),對稱軸為直線k=1,當(dāng)k<1時(shí),y隨x的增大而增大,當(dāng)k=時(shí),y的值最大,然后把k=代入計(jì)算即可.
解答:解:(1)∵方程x2-2(k-1)x+k2=0有兩個(gè)實(shí)數(shù)根x1、x2,
∴△≥0,即4(k-1)2-4k2≥0,解得k≤,
即k的取值范圍為k≤;

(2)根據(jù)根與系數(shù)的關(guān)系得,x1+x2=2(k-1),x1x2=k2
y=x1+x2-x1x2+1
=2(k-1)-k2+1
=-(k-1)2,
∵當(dāng)k<1時(shí),y隨x的增大而增大,
∴當(dāng)k=時(shí),y的值最大,
即k=,y的最大值=-(-1)2=-
點(diǎn)評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.也考查了一元二次方程根與系數(shù)的關(guān)系以及二次函數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、已知關(guān)于x的方程x2+kx+1=0和x2-x-k=0有一個(gè)根相同,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綿陽)已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請求出方程的另一個(gè)根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•西城區(qū)二模)已知關(guān)于x的方程x2+3x=8-m有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-2(k+1)x+k2=0有兩個(gè)實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根.
(2)若等腰△ABC的一邊長為a=6,另兩邊長b,c恰好是這個(gè)方程的兩個(gè)根,求此三角形的周長.

查看答案和解析>>

同步練習(xí)冊答案