如圖,要在底邊BC=160cm,高AD=120cm,的△ABC鐵皮余料上截取一個矩形EFGH,使點H在AB上,點G在AC上,點E、F在BC上,AD交HG于點M,此時
(1)設(shè)矩形EFGH的長HG=y,寬HE=x,確定y與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,矩形EFGH的面積S最大;
(3)以面積最大的矩形EFGH為側(cè)面,圍成一個圓柱形的鐵桶,怎樣圍時,才能使鐵桶的體積最大?請說明理由(注:圍鐵桶側(cè)面時,接縫無重疊,底面另用材料配備)

【答案】分析:(1)按題目給出的比例關(guān)系式求解即可;
(2)根據(jù)矩形的面積公式可得出S=xy,根據(jù)(1)得出的關(guān)于x,y的函數(shù)關(guān)系式可用x替換掉y即可得出S與x的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出S的最大值及對應(yīng)的x的值;
(3)根據(jù)(2)得出的矩形的長和寬,可用長方形的長為底面周長,寬為高來圍鐵桶,也可用長方形的寬為底面周長,長為高來圍鐵桶.分別計算出兩種圍法圍出的鐵桶的體積,然后找出體積最大的哪種情況即可.
解答:解:(1)∵,

∴y=-x+160(或x=-y+120);

(2)∵S=xy,
∴S=-x2+160x=-(x2-120x)=-(x2-120x+3600-3600)
=-(x-60)2+4800.
所以當(dāng)x=60cm時,Smax=4800cm2;

(3)圍圓柱形鐵桶有兩種情況:
當(dāng)x=60cm時,y=-×60+160=80cm.
第一種情況:以矩形EFGH的寬HE=60cm作鐵桶的高,長HG=80cm作鐵桶的底面周長.
則底面半徑R=cm,鐵桶體積V1=π•(2•60=cm3
第二種情況:以矩形EFGH的長HG=80cm作鐵桶的高,寬HE=60cm作鐵桶的底面周長,
則底面半徑r=cm,鐵桶體積V2=π•(2•80=cm3
因為V1>V2
所以矩形EFGH的寬HE=60cm作鐵桶的高,長HG=80cm作鐵桶的底面周長圍成的圓柱形鐵桶的體積較大.
點評:本題考查了圖形面積的求法、圓柱的體積公式、二次函數(shù)的應(yīng)用等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,要在底邊BC=160cm,高AD=120cm,的△ABC鐵皮余料上截取一個矩形EFGH,使點H在AB上,點G在AC上,點E、F在BC上,AD交HG于點M,此時
AM
AD
=
HG
BC

(1)設(shè)矩形EFGH的長HG=y,寬HE=x,確定y與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,矩形EFGH的面積S最大;
(3)以面積最大的矩形EFGH為側(cè)面,圍成一個圓柱形的鐵桶,怎樣圍時,才能使鐵桶的體積最大?請說明理由(注:圍鐵桶側(cè)面時,接縫無重疊,底面另用材料配備)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

如圖,要在底邊BC=160cm,高AD=120cm的△ABC鐵皮余料上,截取一個矩形EFGH,使點H在AB上,點G在AC上,點E、F在BC上,AD交HG于點M,此時
(1)設(shè)矩形EFGH的長HG=y,寬HE=x,試確定y與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,矩形EFGH的面積S最大?
(3)以面積最大的矩形EFGH為側(cè)面,圍成一個圓柱形的鐵桶,怎樣圍時,才能使鐵桶的體積較大?請說明理由.(注:圍鐵桶側(cè)面時,    接縫無重疊,底面另用材料配備)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•四川)如圖,要在底邊BC=160cm,高AD=120cm,的△ABC鐵皮余料上截取一個矩形EFGH,使點H在AB上,點G在AC上,點E、F在BC上,AD交HG于點M,此時
(1)設(shè)矩形EFGH的長HG=y,寬HE=x,確定y與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,矩形EFGH的面積S最大;
(3)以面積最大的矩形EFGH為側(cè)面,圍成一個圓柱形的鐵桶,怎樣圍時,才能使鐵桶的體積最大?請說明理由(注:圍鐵桶側(cè)面時,接縫無重疊,底面另用材料配備)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年四川省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2004•四川)如圖,要在底邊BC=160cm,高AD=120cm,的△ABC鐵皮余料上截取一個矩形EFGH,使點H在AB上,點G在AC上,點E、F在BC上,AD交HG于點M,此時
(1)設(shè)矩形EFGH的長HG=y,寬HE=x,確定y與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,矩形EFGH的面積S最大;
(3)以面積最大的矩形EFGH為側(cè)面,圍成一個圓柱形的鐵桶,怎樣圍時,才能使鐵桶的體積最大?請說明理由(注:圍鐵桶側(cè)面時,接縫無重疊,底面另用材料配備)

查看答案和解析>>

同步練習(xí)冊答案