如圖,在等腰梯形ABCD中,AB∥DC,AB=10cm,CD=4cm,點P從點A出發(fā),以1.5cm/秒的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/秒的速度沿CD向終點D運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止),設P、Q同時出發(fā)并運動了t秒:
(1)當點Q運動到點D時,PQ把梯形分成兩個特殊圖形是
平行四邊形
平行四邊形
、
等腰三角形
等腰三角形
;
(2)過點D作DE⊥AB,垂足為E,當四邊形DEPQ是矩形時,求t的值;
(3)探索:是否存在這樣的t值,使四邊形PBCQ的面積是四邊形APQD面積的2倍?若存在,求出t的值;若不存在,請說明理由.
分析:(1)求出t,求出AP、BP,根據(jù)平行四邊形的判定推出即可,得出AD=DP=BC,根據(jù)等腰三角形的定義判斷即可;
(2)求出AE,QD,EP,根據(jù)DQ=EP得出4-t=1.5t-3,求出即可;
(3)分別求出兩個梯形的面積,根據(jù)題意得出方程,求出t的值即可.
解答:解:(1)平行四邊形、等腰三角形,
理由是:∵當Q到D時,t=4÷1=4,
則AP=1.5×4=6,
∴BP=AB-AP=10-6=4,
∴BP=CD,
∵DC∥AB,
∴四邊形CDPB是平行四邊形,
∴DP=BC=AD,
∴△DPA是等腰三角形,
故答案為:平行四邊形,等腰三角形.

(2)過C作CF⊥AB于F,
則四邊形DCFE是矩形,
DC=EF=4,DE=CF,
由勾股定理得:AE2=AD2-DE2,BF2=BC2-CF2,
∵AD=BC,
∴AE=BF=
1
2
×(10-4)=3,
當DEPQ是矩形時,DQ=EP,
∴4-t=1.5t-3,
解得t=
14
5
(秒);

(3)存在,
理由是:設梯形ABCD的高為h,Q不與D重合(Q與D重合不符題意),
則四邊形PBCQ和APQD都是梯形,
S梯形PBCQ=
(t+10-1.5t)h
2
=
1
2
h(10-0.5t)
,
S梯形APQD=
(4-t+1.5t)h
2
=
1
2
h(4+0.5t)

∴10-0.5t=2(4+0.5t),
解得t=
4
3
(秒),
∴存在t,t=
4
3
秒.
點評:本題考查了等腰梯形的性質和判定,平行四邊形的性質和判定,主要考查學生運用定理進行推理和計算的能力,題目比較典型,但是有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設P、Q同時出發(fā)并運動了t秒.
(1)當PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源:中考必備’04全國中考試題集錦·數(shù)學 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側部分的面積為S.

  

(1)分別求出當點Q位于AB、BC上時,S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)當線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(2)的條件下,設線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當一直線l經(jīng)過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習冊答案