如圖,拋物線y1=-x2+3與x軸交于A、B兩點,與直線y2=-x+b相交于B、C兩點.

(1)求直線BC的解析式和點C的坐標(biāo);
(2)若對于相同的x,兩個函數(shù)的函數(shù)值滿足y1≥y2,則自變量x的取值范圍是     
(1),;

試題分析:(1)令y=0求解得到點B的坐標(biāo),把點B的坐標(biāo)代入直線解析式求出b的值,再與直線聯(lián)立求解得到點C的坐標(biāo);(2)根據(jù)函數(shù)圖象找出拋物線在直線上方部分的x的取值范圍:由圖可知,y1≥y2時,
試題解析:(1)令y=0,則,解得x1=-2,x2=2,∴點B的坐標(biāo)為(2,0),
,解得b=6,
∴直線BC的解析式為.
,解得(舍去),
∴點C的坐標(biāo)為.
(2)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù),則下列說法正確的是(    )
A.y有最小值0,有最大值-3
B.y有最小值-3,無最大值
C.y有最小值-1,有最大值-3
D.y有最小值-3,有最大值0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.點E、F同時從B點出發(fā),沿射線BC向右勻速移動.已知F點移動速度是E點移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點移動距離為x(x>0).

⑴△EFG的邊長是___________ (用含有x的代數(shù)式表示),當(dāng)x=2時,點G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時,y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時,y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時,存在最大值,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司投資新建了一商場,共有商鋪30間.據(jù)預(yù)測,當(dāng)每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5000元,少租出商鋪1間.(假設(shè)年租金的增加額均為5000元的整數(shù)倍)該公司要為租出的商鋪每間每年交各種費用2萬元,未租出的商鋪每間每年交各種費用1萬元.
(1)當(dāng)每間商鋪的年租金定為12萬元時,能租出多少間?年收益多少萬元?
(2)當(dāng)每間商鋪的年租金定為多少萬元時,該公司的年收益最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線與x軸正半軸交于點A(3,0).以O(shè)A為邊在x軸上方作正方形OABC,延長CB交拋物線于點D,再以BD為邊向上作正方形BDEF,.則a=    ,點E的坐標(biāo)是         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小明設(shè)計了一個電子游戲:一電子跳蚤從橫坐標(biāo)為t(t>0)的P1點開始,按點的橫坐標(biāo)依次增加1的規(guī)律,在拋物線上向右跳動,得到點P2、P3,這時△P1P2P3的面積為        。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若二次函數(shù)y=x2-2x+k的圖象經(jīng)過點(-1,y1),(3,y2),則y1與y2的大小關(guān)系為(   )
A.y1>y2B.y1=y(tǒng)2C.y1<y2D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

,則下列函數(shù):①,②,③,④中,的值隨的值增大而增大的函數(shù)共有(  。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,拋物線頂點坐標(biāo)是P(1,3),則函數(shù)y隨自變量x的增大而減小的x的取值范圍是(   )
A.x>3B.x<3C.x>1D.x<1

查看答案和解析>>

同步練習(xí)冊答案