【題目】如圖,拋物線y=ax2+bx+ca≠0)與y軸交于點(diǎn)C0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣20),拋物線的對(duì)稱(chēng)軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E

1)求拋物線的解析式;

2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積為17,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)平行于DE的一條動(dòng)直線l與直線BC相交于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、EP、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo).

【答案】(1)、y= +x+4(2)、不存在,理由見(jiàn)解析.

【解析】試題分析:(1)、首先設(shè)拋物線的解析式為一般式,將點(diǎn)C和點(diǎn)A意見(jiàn)對(duì)稱(chēng)軸代入求出函數(shù)解析式;(2)、本題利用假設(shè)法來(lái)進(jìn)行證明,假設(shè)存在這樣的點(diǎn),然后設(shè)出點(diǎn)F的坐標(biāo)求出FHFG的長(zhǎng)度,然后得出面積與t的函數(shù)關(guān)系式,根據(jù)方程無(wú)解得出結(jié)論.

試題解析:(1)、拋物線y=a+bx+c(a≠0)過(guò)點(diǎn)C(0,4) C=4

=1 b=2a 拋物線過(guò)點(diǎn)A(2,0) 4a2b+c="0"

①②③解得:a=,b=1,c=4 拋物線的解析式為:y= +x+4

(2)、不存在 假設(shè)存在滿足條件的點(diǎn)F,如圖所示,連結(jié)BF、CFOF,過(guò)點(diǎn)FFHx軸于點(diǎn)HFGy軸于點(diǎn)G. 設(shè)點(diǎn)F的坐標(biāo)為(t, +t+4),其中0t4 FH=+t+4 FG=t

∴△OBF的面積=OB·FH=×4×(+t+4)=+2t+8 OFC的面積=OC·FG=2t

四邊形ABFC的面積=AOC的面積+OBF的面積+OFC的面積=+4t+12

令-+4t+12=17 即-+4t5=0 =1620=40 方程無(wú)解

不存在滿足條件的點(diǎn)F

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA=4,OC=3,且頂點(diǎn)A、C均在坐標(biāo)軸上,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AO向終點(diǎn)O移動(dòng);點(diǎn)N從點(diǎn)C出發(fā)沿CB向終點(diǎn)B以同樣的速度移動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了x秒(0<x<4)時(shí),過(guò)點(diǎn)N作NPBC交BO于點(diǎn)P,連接MP.

(1)直接寫(xiě)出點(diǎn)B的坐標(biāo),并求出點(diǎn)P的坐標(biāo)(用含x的式子表示);

(2)設(shè)OMP的面積為S,求S與x之間的函數(shù)表達(dá)式;若存在最大值,求出S的最大值;

(3)在兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)的過(guò)程中,是否存在某一時(shí)刻,使OMP是等腰三角形?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:2(x﹣1)+1=x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各數(shù)中,最大的數(shù)是(
A.﹣5
B.0
C.2
D.﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x、y的二元一次方程組 的解滿足x﹣y>﹣8.
(1)用含m的代數(shù)式表示x﹣y.
(2)求滿足條件的m的所有正整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由四舍五入得到的近似數(shù)-8.30×104,精確到(  )

A. 百分位 B. 十分位

C. 千位 D. 百位

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為1 0個(gè)檔次.第1檔次(最低檔次)的產(chǎn)品一天能生產(chǎn)7 6件,每件利潤(rùn)10元.每提高一個(gè)檔次,每件利潤(rùn)增加2元,但一天產(chǎn)量減少4件.若生產(chǎn)第x檔次的產(chǎn)品一天的總利潤(rùn)為1080元,求該產(chǎn)品的質(zhì)量檔次。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某專(zhuān)賣(mài)店專(zhuān)營(yíng)某品牌的鞋,店主對(duì)上一周中不同號(hào)碼的鞋銷(xiāo)售情況統(tǒng)計(jì)如下:

號(hào)碼

39

40

41

42

43

平均每天銷(xiāo)售數(shù)量/

10

12

20

12

12

該店主決定本周進(jìn)貨時(shí),增加了一些41號(hào)碼的鞋,影響該店主決策的統(tǒng)計(jì)量是(  )

A.眾數(shù)B.方差C.平均數(shù)D.中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線AB∥CD,EF分別交AB、CD于點(diǎn)M、N,NP平分∠MND.
(1)如圖1,若MR平分∠EMB,則MR∥NP.請(qǐng)你把下面的解答過(guò)程補(bǔ)充完整: 解:因?yàn)锳B∥CD(已知)
所以∠EMB=∠END(
因?yàn)镸R平分∠EMB,NP平分∠MND(已知)
所以∠EMR= ∠EMB,∠MNP= ∠MND(角平分線定義)
所以∠EMR=∠MNP
所以MR∥NP(
(2)如圖2,若MR平分∠AMN,則MR與NP又怎樣的位置關(guān)系?請(qǐng)?jiān)跈M線上寫(xiě)出你的猜想結(jié)論:
(3)如圖3,若MR平分∠BMN,則MR與NP又怎樣的位置關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案