【題目】如圖,數(shù)軸的單位長度為1

(1)如果點B,D表示的數(shù)互為相反數(shù),那么圖中點A、點D表示的數(shù)分別是 ;

(2)當(dāng)點B為原點時,在數(shù)軸上是否存在點M,使得點M到點A的距離是點M到點D的距離的2倍,若存在,請求出此時點M所表示的數(shù);若不存在,說明理由;

(3) 在(2)的條件下,點A、點C分別以2個單位長度/秒和0.5個單位長度同時向右運動,同時點P從原點出發(fā)以3個單位長度/秒的速度向左運動,當(dāng)點A與點C之間的距離為3個單位長度時,求點P所對應(yīng)的數(shù)是多少?

【答案】(1)﹣4,2 ;(2)2或10 ;(3)﹣18或﹣4

【解析】

試題(1)由點B,D表示的數(shù)互為相反數(shù),所以點B為﹣2,D為2,則點A為﹣4;

(2)存在,分兩種情況討論解答;

(3)設(shè)當(dāng)點A與點C之間的距離為3個單位長度時,運動時間為t,A點運動到:﹣2+2t,C點運動到:3+0.5t,由AC=3,分類討論,即可解答.

試題解析:解:(1)點B,D表示的數(shù)互為相反數(shù),點B為﹣2,D為2,點A為﹣4,故答案為:﹣4,2;

(2)存在,如圖:

當(dāng)點M在A,D之間時,設(shè)M表示的數(shù)為x,則x﹣(﹣2)=2(4﹣x)

解得:x=2,當(dāng)點M在A,D右側(cè)時,則x﹣(﹣2)=2(x﹣4),解得:x=10,所以點M所表示的數(shù)為2或10;

(3)設(shè)當(dāng)點A與點C之間的距離為3個單位長度時,運動時間為t,A點運動到:﹣2+2t,C點運動到:3+0.5t,﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P點對應(yīng)運動的單位長度為:3×6=18,所以點P表示的數(shù)為﹣18.

3+0.5t﹣(﹣2+2t)=3,解得:t=,所以P點對應(yīng)運動的單位長度為:3×=4,所以點P表示的數(shù)為﹣4.

答:點P表示的數(shù)為﹣18或﹣4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在桌面上,有6個完全相同的小正方體對成的一個幾何體,如圖所示.

(1)請畫出這個幾何體的三視圖.

(2)若將此幾何A的表面噴上紅漆(放在桌面上的一面不噴),則三個面上是紅色的小正方體有____

(3)若另一個幾何體B與幾何體A的主視圖和左視圖相同,而小正方體個數(shù)則比幾何體A1個,則共有______種添法. 請在圖2中畫出幾何體B的俯視圖可能的兩種不同情形.

(4)若現(xiàn)在你的手頭還有一些相同的小正方體可添放在幾何體A上,要保持主視圖和左視圖不變,則最多可以添___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DBC上一點,∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,試求∠DAC、∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖為人民公園中的荷花池,現(xiàn)要測量此荷花池兩旁A、B兩棵樹間的距離(我們不能直接量得).請你根據(jù)所學(xué)知識,以卷尺和測角儀為測量工具設(shè)計一種測量方案.

要求:(1)畫出你設(shè)計的測量平面圖;

(2)簡述測量方法,并寫出測量的數(shù)據(jù)(長度用表示;角度用表示);

(3)根據(jù)你測量的數(shù)據(jù),計算A、B兩棵樹間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E.

(1)求∠CBE的度數(shù);

(2)過點DDFBE,交AC的延長線于點F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線AB上一點O為端點作射線OC,使∠BOC=70°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)

(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=   °;

(2)如圖②,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠BOE,求∠COD的度數(shù);

(3)如圖③,將直角三角板DOE繞點O轉(zhuǎn)動,如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)計算:﹣22+| ﹣4|+( 1+2tan60°.
(2)先化簡,再求值:( )÷ ,其中x是不等式3x+7>1的負整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

同步練習(xí)冊答案