如圖,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD的垂直平分線交BC于E,連接DE,則四邊形ABED的周長等于________.

答案:19
解析:

  分析:根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得DE=CE,然后求出四邊形ABED的周長=AD+AB+BC,然后代入數(shù)據(jù)進行計算即可得解.

  解答:解:∵CD的垂直平分線交BC于E,

  ∴DE=CE,

  ∴四邊形ABED的周長=AD+AB+BE+DE=AD+AB+BC,

  ∵AD=4,AB=5,BC=10,

  ∴四邊形ABED的周長=4+5+10=19.

  故答案為:19.

  點評:本題考查了梯形,線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),熟記線段垂直平分線的性質(zhì)是解題的關(guān)鍵.


提示:

梯形;線段垂直平分線的性質(zhì).


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長為( 。
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點O,那么,圖中全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對角線,中位線EF交BD于O點,若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長;
(2)試在邊AB上確定點P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習冊答案