解:(1)DF=DM.
(2)仍具有(1)的結(jié)論,即DF=DM.
證明:延長CD,過M作MP⊥CD,交于P,P為垂足.
∵∠MBP+∠ABC=90°,∠BAC+∠ABC=90°,
∴∠MBP=∠BAC.
又∠ACB=∠MPB=90°,AB=BM,
∴△ABC≌△BMP,從而BC=MP
∵BC=BF,∴BF=MP.
又∠PDM=∠BDF,∠DPM=∠DBF,
∴△DBF≌△DPM,∴DF=DM.
(3)高.
證明:如圖,延長GD,過M、F作GD的垂線垂足為P、Q.
∵∠MBP+∠BMP=90°,∠ABG+∠MBP=90°,
∴∠BMP=∠ABG.
又∠MPB=∠AGB=90°,AB=BM,
∴△ABG≌△BMP,∴MP=BG.
同理△FQB≌△BGC,
∴FQ=BG,∴MP=FQ.
∵∠FDQ=∠MDP,∠FQD=∠MPD=90°,
∴△FDQ≌△MDP,進而DF=DM.
說明過F作FH∥BM交BD的延長線于H.通過證明△ABC≌△HFB得HF=AB=BM,進而證明△BDM≌△HFD,得出D是FM的中點.
分析:本題是變式拓展題,△ABC由特殊到一般,構(gòu)造全等三角形的方法沒有變,都要通過與第三個直角三角形全等過渡,得出結(jié)論.
點評:三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.