如圖,已知AB∥CD∥EF,且∠ABE =70°,
∠ECD = 150°,則∠BEC.= __________度。
40

試題分析:解:∵AB∥EF,
∴∠BEF=∠ABE=70°;又∵EF∥CD,
∴∠CEF=180°-∠ECD=180°-150°=30°,
∴∠BEC=∠BEF-∠CEF=40°;故應(yīng)填40.
點(diǎn)評(píng):本題主要利用兩直線平行,同旁內(nèi)角互補(bǔ)以及兩直線平行,內(nèi)錯(cuò)角相等進(jìn)行解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,下列說(shuō)法錯(cuò)誤的是(  )
A.∠1和∠2是同旁內(nèi)角B.∠3和∠4是內(nèi)錯(cuò)角
C.∠5和∠6是同旁內(nèi)角D.∠5和∠8是同位角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB∥CD,直線EF分別交AB、CD于點(diǎn)E、F,EG平分∠BEF,若∠1=72°,則∠2=

A.24°                B.27°            C.54°            D.108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法中,是平行線的性質(zhì)的是( )
①兩條直線平行,同旁內(nèi)角互補(bǔ)
②同位角相等,兩直線平行
③內(nèi)­錯(cuò)角相等,兩直線平行
④同一平面內(nèi),垂直于同一直線的兩直線平行
A.①B.②和③C.④D.①和④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用直尺和圓規(guī)作一個(gè)角的平分線的示意圖如圖所示,則能說(shuō)明

∠AOC=∠BOC的依據(jù)是(      )
A.SSSB.ASA
C.AASD.角平分線上的點(diǎn)到角兩邊距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖AB∥CD,CE交AB于點(diǎn)A,AD⊥AC于點(diǎn)A,若∠1=48°,則∠2=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線AC∥BD,連結(jié)AB,直線AC、BD及線段AB把平面分成①,②,③,④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分。當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連結(jié)PA、PB,構(gòu)成∠PAC,∠APB,∠PBD三個(gè)角。(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°)
       
(1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),試說(shuō)明∠APB=∠PAC+∠PBD;
(2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB,∠PAC,∠PBD三個(gè)角之間的關(guān)系是:
                                                                
(3)動(dòng)點(diǎn)P在第③部分時(shí),試探究∠APB,∠PAC,∠PBD三個(gè)角之間的關(guān)系,寫出點(diǎn)P的具體位置和相應(yīng)的結(jié)論,并選擇一種結(jié)論加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,BD⊥AC于D點(diǎn),F(xiàn)G⊥AC于G點(diǎn),∠CBE+∠BED=180°.

⑴求證:FG∥BD;
⑵求證:∠CFG=∠BDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

把命題“同位角相等,兩直線平行”改寫成“如果……那么……”的形式是:                       .

查看答案和解析>>

同步練習(xí)冊(cè)答案