已知,如圖,⊙O1與⊙O2相交,點(diǎn)P是其中一個(gè)交點(diǎn),點(diǎn)A在⊙O2上,AP的延長(zhǎng)線交⊙O1于點(diǎn)B,AO2的延長(zhǎng)線交⊙O1于點(diǎn)C、D,交⊙O2于點(diǎn)E,連接PC、PE、PD,且,過(guò)A作⊙O1的切線AQ,切點(diǎn)為Q.求證:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

【答案】分析:(1)過(guò)D作DM∥PE交CP的延長(zhǎng)線于M,根據(jù)平行線分線段成比例定理求出PM=PD,推出∠M=∠PDM,根據(jù)平行線的性質(zhì)得出∠M=∠CPE,∠DPE=∠PDM,即可得出答案;
(2)根據(jù)切割線定理得出AQ2=AP×AB,證△APC∽△DPB,推出=,得出AP×BP=PC×PD,代入即可得出答案.
解答:(1)證明:過(guò)D作DM∥PE交CP的延長(zhǎng)線于M,
=,
=
∴PM=PD,
∴∠M=∠PDM,
∵PE∥MD,
∴∠M=∠CPE,∠DPE=∠PDM,
∴∠CPE=∠DPE;

(2)證明:連接BD,
∵O2在AE上,
∴∠APE=∠BPE=90°,
∵∠CPE=∠DPE,
∴∠APC=∠BPD,
∵P、B、D、C四點(diǎn)共圓,
∴∠ACP=∠B,
∴△APC∽△DPB,
=,
∴AP×BP=PC×PD,
∵AQ切⊙O1于Q,APB是⊙O1的割線,
∴AQ2=AP×AB,
∴AQ2-AP2=AP×AB-AP2=AP(AB-AP)=AP×BP=PC•PD,
即AQ2-AP2=PC•PD.
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì)和判定,圓內(nèi)接四邊形的性質(zhì),等腰三角形的性質(zhì),平行線分線段成比例定理等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生綜合運(yùn)用性質(zhì)進(jìn)行推理的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知;如圖,⊙O1與⊙O2內(nèi)切于點(diǎn)A,⊙O2的直徑AC交⊙O1于點(diǎn)B,⊙O2的弦FC切⊙精英家教網(wǎng)O1于點(diǎn)D,AD的延長(zhǎng)線交⊙O2于點(diǎn)E,連接AF、EF、BD.
(1)求證:AC•AF=AD•AE;
(2)若O1O2=9,cos∠BAD=
23
,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于C點(diǎn),AB一條外公切線,A、B分別為切點(diǎn),連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=
2
,則
R
r
的值為( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•南京)已知,如圖,⊙O1與⊙O2相交,點(diǎn)P是其中一個(gè)交點(diǎn),點(diǎn)A在⊙O2上,AP的延長(zhǎng)線交⊙O1于點(diǎn)B,AO2的延長(zhǎng)線交⊙O1于點(diǎn)C、D,交⊙O2于點(diǎn)E,連接PC、PE、PD,且
PC
PD
=
CE
DE
,過(guò)A作⊙O1的切線AQ,切點(diǎn)為Q.求證:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點(diǎn),直線l與⊙O1、⊙O2分別切于B,C點(diǎn),若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2相交于A、B,若兩圓半徑分別為12和5,O1O2=13,則AB=
120
13
120
13

查看答案和解析>>

同步練習(xí)冊(cè)答案