對某一個函數(shù)給出如下定義:若存在實數(shù)M>0,對于任意的函數(shù)值y,都滿足﹣M<y≤M,則稱這個函數(shù)是有界函數(shù),在所有滿足條件的M中,其最小值稱為這個函數(shù)的邊界值.例如,如圖中的函數(shù)是有界函數(shù),其邊界值是1.
(1)分別判斷函數(shù)y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;
(2)若函數(shù)y=﹣x+1(a≤x≤b,b>a)的邊界值是2,且這個函數(shù)的最大值也是2,求b的取值范圍;
(3)將函數(shù)y=x2(﹣1≤x≤m,m≥0)的圖象向下平移m個單位,得到的函數(shù)的邊界值是t,當m在什么范圍時,滿足≤t≤1?
(2)∵函數(shù)y=﹣x+1的圖象是y隨x的增大而減小,
∴當x=a時,y=﹣a+1,
又邊界值為2,∴﹣a+1=2,解得a=﹣1,
當x=b時,y=﹣b+1,則﹣2≤﹣b+1≤2,
又b>a,a=﹣1,
∴解得﹣1<b≤3.
(3)若m>1,函數(shù)向下平移m個單位后,x=0時,函數(shù)值小于﹣1,
此時函數(shù)的邊界值t≥1,這與題意不符,∴m≤1.
當x=﹣1時,y=1,即過點(﹣1,1),
當x=0時,y最小=0,即過點(0,0),
都向下平移m個單位,則對應(yīng)點的坐標為(﹣1,1-m),(0,﹣m),
由邊界值定義可得≤1-m≤1或﹣1≤﹣m≤﹣,
∴解得0≤m≤或≤m≤1.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙A、⊙B的半徑分別為4、2,且AB=12.若作⊙C使得圓心在一直線AB上,且⊙C與⊙A外切,⊙C與⊙B相交于兩點,則⊙C的半徑可以是
A.3 B.4 C.5 D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
把一張矩形紙片,按如下圖所示操作:將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.
(1)求證:四邊形BFDE是平行四邊形;
(2)若四邊形BFDE是菱形,AB=2,求菱形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
甲、乙兩名同學(xué)在一次用頻率去估計概率的實驗中,繪出了某一結(jié)果出現(xiàn)的頻率的折線圖,則符合這一結(jié)果的實驗可能是
A. 擲一枚正六面體的骰子,出現(xiàn)1點的概率
B. 拋一枚硬幣,出現(xiàn)正面的概率
C. 任意寫一個整數(shù),它能被2整除的概率
D. 從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率
(第5題) (第6題)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com