【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(4,0),與y軸交于C(0,﹣2).
(1)求拋物線的解析式;
(2)H是C關(guān)于x軸的對(duì)稱點(diǎn),P是拋物線上的一點(diǎn),當(dāng)△PBH與△AOC相似時(shí),求符合條件的P點(diǎn)的坐標(biāo)(求出兩點(diǎn)即可);
(3)過點(diǎn)C作CD∥AB,CD交拋物線于點(diǎn)D,點(diǎn)M是線段CD上的一動(dòng)點(diǎn),作直線MN與線段AC交于點(diǎn)N,與x軸交于點(diǎn)E,且∠BME=∠BDC,當(dāng)CN的值最大時(shí),求點(diǎn)E的坐標(biāo).
【答案】
(1)
解:∵拋物線與x軸交于A(﹣1,0),B(4,0),
∴設(shè)拋物線的解析式為:y=a(x+1)(x﹣4),
把(0,﹣2)代入y=a(x+1)(x﹣4),
∴a= ,
∴拋物線的解析式為:y= x2﹣ x﹣2
(2)
解:當(dāng)△PBH與△AOC相似時(shí),
∴△AOC是直角三角形,
∴△PBH也是直角三角形,
由題意知:H(0,2),
∴OH=2,
∵A(﹣1,0),B(4,0),
∴OA=1,OB=4,
∴
∵∠AOH=∠BOH,
∴△AOH∽△BOH,
∴∠AHO=∠HBO,
∴∠AHO+∠BHO=∠HBO+∠BHO=90°,
∴∠AHB=90°,
設(shè)直線AH的解析式為:y=kx+b,
把A(﹣1,0)和H(0,2)代入y=kx+b,
∴ ,
∴解得 ,
∴直線AH的解析式為:y=2x+2,
聯(lián)立 ,
解得:x=1或x=﹣8,
當(dāng)x=﹣1時(shí),
y=0,
當(dāng)x=8時(shí),
y=18
∴P的坐標(biāo)為(﹣1,0)或(8,18)
(3)
解:過點(diǎn)M作MF⊥x軸于點(diǎn)F,
設(shè)點(diǎn)E的坐標(biāo)為(n,0),M的坐標(biāo)為(m,0),
∵∠BME=∠BDC,
∴∠EMC+∠BME=∠BDC+∠MBD,
∴∠EMC=∠MBD,
∵CD∥x軸,
∴D的縱坐標(biāo)為﹣2,
令y=﹣2代入y= x2﹣ x﹣2,
∴x=0或x=3,
∴D(3,﹣2),
∵B(4,0),
∴由勾股定理可求得:BD= ,
∵M(jìn)(m,0),
∴MD=3﹣m,CM=m(0≤m≤3)
∴由拋物線的對(duì)稱性可知:∠NCM=∠BDC,
∴△NCM∽△MDB,
∴ ,
∴ ,
∴CN= =﹣ (m﹣ )2+ ,
∴當(dāng)m= 時(shí),CN可取得最大值,
∴此時(shí)M的坐標(biāo)為( ,﹣2),
∴MF=2,BF= ,MD=
∴由勾股定理可求得:MB= ,
∵E(n,0),
∴EB=4﹣n,
∵CD∥x軸,
∴∠NMC=∠BEM,∠EBM=∠BMD,
∴△EMB∽△BDM,
∴ ,
∴MB2=MDEB,
∴ = ×(4﹣n),
∴n=﹣ ,
∴E的坐標(biāo)為(﹣ ,0).
【解析】(1)設(shè)拋物線的解析式為y=a(x+1)(x﹣4),然后將(0,﹣2)代入解析式即可求出a的值;(2)當(dāng)△PBH與△AOC相似時(shí),△PBH是直角三角形,由 可知∠AHB=90°,所以求出直線AH的解析式后,聯(lián)立一次函數(shù)與二次函數(shù)的解析式后即可求出P的坐標(biāo);(3)設(shè)M的坐標(biāo)為(m,0),由∠BME=∠BDC可知∠EMC=∠MBD,所以△NCM∽△MDB,利用對(duì)應(yīng)邊的比相等即可得出CN與m的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)即可求出m= 時(shí),CN有最大值,然后再證明△EMB∽△BDM,即可求出E的坐標(biāo).本題考查函數(shù)的綜合問題,涉及待定系數(shù)法求解析式,聯(lián)立解析式求交點(diǎn)坐標(biāo),相似三角形判定與性質(zhì),二次函數(shù)最值等知識(shí),內(nèi)容較為綜合,需要學(xué)生靈活運(yùn)用知識(shí)去解決問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們根據(jù)指數(shù)運(yùn)算,得出了一種新的運(yùn)算,如表是兩種運(yùn)算對(duì)應(yīng)關(guān)系的一組實(shí)例:
指數(shù)運(yùn)算 | 21=2 | 22=4 | 23=8 | … | 31=3 | 32=9 | 33=27 | … |
新運(yùn)算 | log22=1 | log24=2 | log28=3 | … | log33=1 | log39=2 | log327=3 | … |
根據(jù)上表規(guī)律,某同學(xué)寫出了三個(gè)式子:①log216=4,②log525=5,③log2 =﹣1.其中正確的是( 。
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC與Rt△OCD中,∠ACB=∠DCO=90°,O為AB的中點(diǎn).
(1)求證:∠B=∠ACD.
(2)已知點(diǎn)E在AB上,且BC2=ABBE.
(i)若tan∠ACD= ,BC=10,求CE的長;
(ii)試判定CD與以A為圓心、AE為半徑的⊙A的位置關(guān)系,并請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與坐標(biāo)軸分別交于A(﹣2,0),B(0,1)兩點(diǎn),與反比例函數(shù)的圖象在第一象限交于點(diǎn)C(4,n),求一次函數(shù)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.
解答下面的問題:
(1)求過點(diǎn)P(1,4)且與已知直線y=-2x-1平行的直線的函數(shù)表達(dá)式,并畫出直線l的圖象;
(2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線:y=kx+t ( t>0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將含有30°角的直角三角板OAB如圖放置在平面直角坐標(biāo)系中,OB在x軸上,若OA=2,將三角板繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。
A.( ,﹣1)
B.(1,﹣ )
C.( ,﹣ )
D.(﹣ , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年體育中考中,某班一學(xué)習(xí)小組6名學(xué)生的體育成績?nèi)缦卤,則這組學(xué)生的體育成績的眾數(shù),中位數(shù),方差依次為( 。
成績(分) | 27 | 28 | 30 |
人數(shù) | 2 | 3 | 1 |
A.28,28,1
B.28,27.5,1
C.3,2.5,5
D.3,2,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批肥料,為了驗(yàn)證這批肥料的重量,抽出 10 袋進(jìn)行稱重,每袋以 50 千克為標(biāo)準(zhǔn),超出部分記為正,不足部分記為負(fù),10 袋的重量分別如下:+5,﹣3,﹣8,+6,+4,+8,﹣2,﹣12,+8,+5
(1)按每袋 50 千克為標(biāo)準(zhǔn),抽出的 10 袋肥料的重量超出或不足多少千克?
(2)若購進(jìn)這批肥料共有 500 袋,問這批肥料的總重量約為多少?
(3)若按每袋 120 元購進(jìn),140 元賣出,則賣完這批肥料的總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點(diǎn)C成中心對(duì)稱的△A1B1C1.
(2)將△A1B1C1向右平移4個(gè)單位,作出平移后的△A2B2C2.
(3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫出點(diǎn)P的坐標(biāo)(不寫解答過程,直接寫出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com