【題目】嘗試探究

如圖-,在△ABC中,∠C=90°,∠A=30°,點(diǎn)E、F分別是BC、AC邊上的點(diǎn),且EF//BC.

的值為 ;直線與直線的位置關(guān)系為

類比延伸

如圖,若將圖中的繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接,則在旋轉(zhuǎn)的過程中,請(qǐng)判斷的值及直線與直線的位置關(guān)系,并說明理由;

拓展運(yùn)用

,在旋轉(zhuǎn)過程中,當(dāng)三點(diǎn)在同一直線上時(shí),請(qǐng)直接寫出此時(shí)線段的長(zhǎng).

【答案】 ; ; ;(3

【解析】

1)①根據(jù)直角三角形30°角的性質(zhì)即可解決問題;

②根據(jù)已知可直接得出答案;

2)只要證明△ACFBCE,根據(jù)相似三角形的性質(zhì)即可得的值,也可得∠BCE=CAF,繼而推導(dǎo)即可得;

3)分兩種情況畫出圖形分別解決即可.

①∵在ABC中,∠ABC=90°,∠A=30°,EF//AB,

∴∠CFE=A=30°,

CF==EC,AC==BC

AF=AC-CF=BC-EC=BC-EC=BE,

=,

故答案為:

②∵∠ACB=90°

,即直線與直線的位置關(guān)系為垂直,

故答案為:;

理由如下:由及旋轉(zhuǎn)的性質(zhì)知,

中,

中,,

,又,

,,

=

,

,

如圖,延長(zhǎng)于點(diǎn),交于點(diǎn),

,

,

,,

;

①如圖,∵ECBFCA,∴AFBE=CFCE=,

設(shè)BE=a,則AF=a,

BE、F共線,∴∠BEC=AFC=120°

∵∠EFC=30°,∴∠AFB=90°

RtABF中,AB=2BC=6AF=a,BF=EF+BE=4+a,

a=-1+-1-(舍去),

AF=a=

②如圖,當(dāng)E、B、F共線時(shí),同法可證:AF=BE,∠AFB=90°

RtABF中,

a=1+1-(舍去),

AF=a=

綜上,AF的長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).

(1)請(qǐng)?jiān)趫D中,畫出ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;

(2)以點(diǎn)O為位似中心,將ABC縮小為原來的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABCABAC10,BC16

1)作△ABC的外接圓O(用圓規(guī)和直尺作圖,不寫作法,但要保留作圖痕跡)

2)求OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點(diǎn)和點(diǎn)為圓心,為圓心,大于號(hào)的長(zhǎng)為半徑面狐,兩弧交于點(diǎn),:②做直線,且恰好經(jīng)過點(diǎn),與交于點(diǎn),連接,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點(diǎn)和點(diǎn)為圓心,為圓心,大于號(hào)的長(zhǎng)為半徑面狐,兩弧交于點(diǎn):②做直線,且恰好經(jīng)過點(diǎn),與交于點(diǎn),連接,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD5,AB8,點(diǎn)EDC上一個(gè)動(dòng)點(diǎn),把△ADE沿AE折疊,若點(diǎn)D的對(duì)應(yīng)點(diǎn)D′,連接DB,以下結(jié)論中:①DB的最小值為3;②當(dāng)DE時(shí),△ABD′是等腰三角形;③當(dāng)DE2是,△ABD′是直角三角形;④△ABD′不可能是等腰直角三角形;其中正確的有_____.(填上你認(rèn)為正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,∠ACB=90°,D是邊AB的中點(diǎn),CE=CB,CD=5,.

求:(1BC的長(zhǎng).

2tanE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場(chǎng)銷售,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),草莓銷售不會(huì)虧本,且每天的銷售量y(千克)與銷售單價(jià)x(元/千克)之間函數(shù)關(guān)系如圖所示.

1)求yx的函數(shù)關(guān)系式,并寫出x的取值范圍.

2)當(dāng)該品種草莓的定價(jià)為多少時(shí),每天銷售獲得利潤(rùn)最大?最大利潤(rùn)是多少?

3)某村今年草莓采摘期限30天,預(yù)計(jì)產(chǎn)量6000千克,則按照(2)中的方式進(jìn)行銷售,能否銷售完這批草莓?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 某校為了解九年級(jí)男同學(xué)的體育考試準(zhǔn)備情況,隨機(jī)抽取部分男同學(xué)進(jìn)行了1000米跑測(cè)試.按照成績(jī)分為優(yōu)秀、良好、合格與不合格四個(gè)等級(jí).學(xué)校繪制了如下不完整的統(tǒng)計(jì)圖.

(1)根據(jù)給出的信息,補(bǔ)全兩幅統(tǒng)計(jì)圖;

(2)該校九年級(jí)有600名男生,請(qǐng)估計(jì)成績(jī)未達(dá)到良好有多少名?

(3)某班甲、乙兩位成績(jī)優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運(yùn)動(dòng)會(huì)1000米比賽,預(yù)賽分為A、B、C三組進(jìn)行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案