【題目】如圖,已知拋物線y=﹣ x2﹣ x+2與x軸交于A、B兩點,與y軸交于點C
(1)求點A,B,C的坐標(biāo);
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F(xiàn)為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:令y=0得﹣ x2﹣ x+2=0,
∴x2+2x﹣8=0,
x=﹣4或2,
∴點A坐標(biāo)(2,0),點B坐標(biāo)(﹣4,0),
令x=0,得y=2,
∴點C坐標(biāo)(0,2)
(2)
解:由圖象可知AB只能為平行四邊形的邊,
∵AB=EF=6,對稱軸x=﹣1,
∴點E的橫坐標(biāo)為﹣7或5,
∴點E坐標(biāo)(﹣7,﹣ )或(5,﹣ ),此時點F(﹣1,﹣ ),∴以A,B,E,F(xiàn)為頂點的平行四邊形的面積=6× =
(3)
如圖所示,
①當(dāng)C為頂點時,CM1=CA,CM2=CA,作M1N⊥OC于N,
在RT△CM1N中,CN= = ,
∴點M1坐標(biāo)(﹣1,2+ ),點M2坐標(biāo)(﹣1,2﹣ ).
②當(dāng)M3為頂點時,∵直線AC解析式為y=﹣x+1,
線段AC的垂直平分線為y=x,
∴點M3坐標(biāo)為(﹣1,﹣1).
③當(dāng)點A為頂點的等腰三角形不存在.
綜上所述點M坐標(biāo)為(﹣1,﹣1)或(﹣1,2+ )或(﹣1.2﹣ ).
【解析】(1)分別令y=0,x=0,即可解決問題.(2)由圖象可知AB只能為平行四邊形的邊,易知點E坐標(biāo)(﹣7,﹣ )或(5,﹣ ),由此不難解決問題.(3)分A、C、M為頂點三種情形討論,分別求解即可解決問題.本題考查二次函數(shù)綜合題、平行四邊形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是熟練掌握拋物線與坐標(biāo)軸交點的求法,學(xué)會分類討論的思想,屬于中考壓軸題.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和平行四邊形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在∠O的一邊OA上.按要求畫圖并填空:
(1)過點A畫直線AB⊥OA,與∠O的另一邊相交于點B;過點A畫OB的垂線段AC,垂足為點C;過點C畫直線CD∥OA,交直線AB于點D。
(2)∠CDB=________°;
(3)如果OA=8,AB=6,OB=10,則點A到直線OB的距離為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了強化司機的交通安全意識,我市利用交通安全宣傳月對司機進行了交通安全知識問卷調(diào)查.關(guān)于酒駕設(shè)計了如下調(diào)查問卷:
克服酒駕﹣﹣你認(rèn)為哪種方式最好?(單選) |
A加大宣傳力度,增強司機的守法意識. B在汽車上張貼溫馨提示:“請勿酒駕”. C司機上崗前簽“拒接酒駕”保證書. D加大檢查力度,嚴(yán)厲打擊酒駕. E查出酒駕追究一同就餐人的連帶責(zé)任. |
隨機抽取部分問卷,整理并制作了如下統(tǒng)計圖:
根據(jù)上述信息,解答下列問題:
(1)本次調(diào)查的樣本容量是多少?
(2)補全條形圖,并計算B選項所對應(yīng)扇形圓心角的度數(shù);
(3)若我市有3000名司機參與本次活動,則支持D選項的司機大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC,∠A、∠B、∠C之和為多少?為什么?
解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延長BC到E
∵∠ACD=∠ (已作)
AB∥CD( )
∴∠B= ( )
而∠ACB+∠ACD+∠DCE=180°
∴∠ACB+ + =180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運動員在一場籃球比賽中的技術(shù)統(tǒng)計如表所示:
技術(shù) | 上場時間(分鐘) | 出手投籃(次) | 投中 | 罰球得分 | 籃板 | 助攻(次) | 個人總得分 |
數(shù)據(jù) | 46 | 66 | 22 | 10 | 11 | 8 | 60 |
注:表中出手投籃次數(shù)和投中次數(shù)均不包括罰球.
根據(jù)以上信息,求本場比賽中該運動員投中2分球和3分球各幾個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A.不可能事件發(fā)生的概率為0
B.隨機事件發(fā)生的概率為
C.概率很小的事件不可能發(fā)生
D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=2x+4
(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象;
2)求圖象與x軸的交點A的坐標(biāo),與y軸交點B的坐標(biāo);
(3)在(2)的條件下,求出△AOB的面積;
(4)利用圖象直接寫出:當(dāng)y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx+c(a≠0)經(jīng)過原點,頂點為A(h,k)(h≠0).
(1)當(dāng)h=1,k=2時,求拋物線的解析式;
(2)若拋物線y=tx2(t≠0)也經(jīng)過A點,求a與t之間的關(guān)系式;
(3)當(dāng)點A在拋物線y=x2﹣x上,且﹣2≤h<1時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在ABCD中,∠ABC=60°,且AB=BC,∠MAN=60°.請?zhí)剿鰾M,DN與AB的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com