【題目】已知拋物線x軸于AB兩點(diǎn),其中點(diǎn)A坐標(biāo)為,與y軸交于點(diǎn)C,且對稱軸在y軸的左側(cè),拋物線的頂點(diǎn)為P.

(1)當(dāng)時,求拋物線的頂點(diǎn)坐標(biāo);

(2)當(dāng)時,求b的值;

(3)在(1)的條件下,點(diǎn)Qx軸下方拋物線上任意一點(diǎn),點(diǎn)D是拋物線對稱軸與x軸的交點(diǎn),直線、分別交拋物線的對稱軸于點(diǎn)M、N.請問是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

【答案】(1).(2).(3),為定值

【解析】

1)將,A坐標(biāo)代入拋物線解析式即可;

2)設(shè)B點(diǎn)坐標(biāo)為,可證明是等腰直角三角形,通過勾股定理即可求得長度,即的長,從而求得b的值.

(3)設(shè),求得直線,直線,用含t的代數(shù)式表示即可求解.

(1)∵,∴拋物線為

∴將點(diǎn)代入,得,∴,

∴拋物線的解析式為

∴頂點(diǎn)坐標(biāo)為.

(2)由已知將點(diǎn)代入,得,∴,

∵對稱軸在y軸的左側(cè),∴,

,∴;

設(shè)B點(diǎn)坐標(biāo)為,則,

是等腰直角三角形,

∴由勾股定理得,

又∵,

,

解得.

(3)為定值,如圖所示:

∵拋物線的對稱軸為:直線

,

設(shè)

設(shè)直線解析式為

,解得:

∴直線

當(dāng)時,

設(shè)直線解析式為

解得:

∴直線

當(dāng)時,

,為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ykx+b與反比例函數(shù)yx0)的圖象分別交于點(diǎn)Am,3)和點(diǎn)B 6,n),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn) D

1)求直線AB的解析式;

2)若點(diǎn)Px軸上一動點(diǎn),當(dāng)SADPSBOD時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017黔東南州)如圖,某校教學(xué)樓后方有一斜坡,已知斜坡的長為12米,視角60°,根據(jù)有關(guān)部門的規(guī)定,時,才能避免滑坡危險,學(xué)校為了消除安全隱患,決定對斜坡進(jìn)行改造,在保持坡腳不動的情況下,學(xué)校至少要把坡頂向后水平移動多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù),參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)為常數(shù),)的圖像在第一象限內(nèi)交于點(diǎn),且與軸、軸分別交于兩點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)點(diǎn)軸上,且的面積等于,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,AM,N均在格點(diǎn)上.在線段上有一動點(diǎn)B,以為直角邊在的右側(cè)作等腰直角,使,,G是一個小正方形邊的中點(diǎn).

(1)當(dāng)點(diǎn)B的位置滿足時,求此時的長_______;

(2)請用無刻度的直尺,在如圖所示的網(wǎng)格中,畫出一個點(diǎn)C,使其滿足線段最短,并簡要說明點(diǎn)C的位置是如何找到的(不要求證明)____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某劇院舉行專場音樂會,成人票每張20元,學(xué)生票每張5元.暑假期間,為了豐富廣大師生的業(yè)余文化生活,影劇院制定了兩種優(yōu)惠方案,方案一:購買一張成人票贈送一張學(xué)生票;方案二:按總價的90%付款.某校有4名老師帶隊,與若干名(不少于4人)學(xué)生一起聽音樂會.設(shè)學(xué)生人數(shù)為x人,x為整數(shù)).

(Ⅰ)根據(jù)題意填表:

學(xué)生人數(shù)/

4

10

20

方案一付款金額/

80

110

方案二付款金額/

90

117

(Ⅱ)設(shè)方案一付款總金額為元,方案二付款總金額為元,分別求,關(guān)于x的函數(shù)解析式;

(Ⅲ)根據(jù)題意填空:

①若用兩種方案購買音樂會的花費(fèi)相同,則聽音樂會的學(xué)生有________________人;

②若有60名學(xué)生聽音樂會,則用方案_______________購買音樂會票的花費(fèi)少;

③若用一種方案購買音樂會票共花費(fèi)了450元,則用方案________________購買音樂會票,使聽音樂的學(xué)生人數(shù)多.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】日,葫蘆島市九年級師生結(jié)束了兩個多月的線上教學(xué)和學(xué)習(xí),正式回歸校園,在開學(xué)第一天,某校教導(dǎo)處老師為了解九年級學(xué)生對新冠傳播與防治知識的掌握情況,隨機(jī)抽取了部分學(xué)生進(jìn)行了防疫知識的測試,測試后的成績,按得分劃分為四個等級,:優(yōu)秀,:良好,:及格,:不及格,并繪制了如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.根據(jù)提供的信息,解答以下問題:

1)本次調(diào)查抽取的學(xué)生人數(shù)有多少人?

2)扇形統(tǒng)計圖中 , 并補(bǔ)全條形統(tǒng)計圖;

3)已知該校九年級有名學(xué)生,學(xué)校決定對不及格的學(xué)生進(jìn)行一次防疫知識的培訓(xùn),那么需要接受培訓(xùn)的學(xué)生大約有多少人?

4)已知優(yōu)秀的同學(xué)有名男生和名女生,從中隨機(jī)抽取名進(jìn)行防疫知識的交流,請用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園手機(jī)現(xiàn)象越來越受到社會的關(guān)注.五一期間,小記者劉凱隨機(jī)調(diào)查了城區(qū)若干名學(xué)生和家長對中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計整理并制作了如圖所示的統(tǒng)計圖:

1)求這次調(diào)查的家長人數(shù),并補(bǔ)全圖

2)求圖中表示家長贊成的圓心角的度數(shù);

3)從這次接受調(diào)查的學(xué)生中,隨機(jī)抽查一個,恰好是無所謂態(tài)度的學(xué)生的概率是多少?

4)為更深入的了解學(xué)生的看法,又從贊成的學(xué)生甲、乙、丙、丁四人中隨機(jī)選取2人,請用樹狀圖法或列表法求出恰好選中甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某射擊運(yùn)動員在訓(xùn)練中射擊了10次,成績?nèi)鐖D,下列結(jié)論正確的是(

A.平均數(shù)是8B.眾數(shù)是8 C.中位數(shù)是9 D.方差是1

查看答案和解析>>

同步練習(xí)冊答案