(2013•黃石)如圖1所示,已知直線y=kx+m與x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A、C兩點(diǎn),點(diǎn)B是拋物線與x軸的另一個(gè)交點(diǎn),當(dāng)x=-
1
2
時(shí),y取最大值
25
4

(1)求拋物線和直線的解析式;
(2)設(shè)點(diǎn)P是直線AC上一點(diǎn),且S△ABP:S△BPC=1:3,求點(diǎn)P的坐標(biāo);
(3)直線y=
1
2
x+a與(1)中所求的拋物線交于點(diǎn)M、N,兩點(diǎn),問:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請(qǐng)說明理由.
②猜想當(dāng)∠MON>90°時(shí),a的取值范圍.(不寫過程,直接寫結(jié)論)
(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M、N兩點(diǎn)之間的距離為|MN|=
(x2-x1)2+(y2-y1)2
分析:(1)先根據(jù)拋物線y=-x2+bx+c,當(dāng)x=-
1
2
時(shí),y取最大值
25
4
,得到拋物線的頂點(diǎn)坐標(biāo)為(-
1
2
,
25
4
),可寫出拋物線的頂點(diǎn)式,再根據(jù)拋物線的解析式求出A、C的坐標(biāo),然后將A、C的坐標(biāo)代入
y=kx+m,運(yùn)用待定系數(shù)法即可求出直線的解析式;
(2)根據(jù)等高三角形的面積比等于底邊比,因此兩三角形的面積比實(shí)際是AP:PC=1:3,即3AP=PC,可先求出AC的長(zhǎng),然后分情況討論:
①當(dāng)P在線段AC上時(shí),過點(diǎn)P作PH⊥x軸,點(diǎn)H為垂足.由PH∥OC,根據(jù)平行線分線段成比例定理求出PH的長(zhǎng),進(jìn)而求出P點(diǎn)的坐標(biāo);
②當(dāng)P在CA的延長(zhǎng)線上時(shí),由PG∥OC,根據(jù)平行線分線段成比例定理求出PG的長(zhǎng),進(jìn)而求出P點(diǎn)的坐標(biāo);
(3)聯(lián)立兩函數(shù)的解析式,設(shè)直線y=
1
2
x+a與拋物線y=-x2-x+6的交點(diǎn)為M(xM,yM),N(xN,yN)(M在N左側(cè)),則xM、xN是方程x2+
3
2
x+a-6=0的兩個(gè)根,由一元二次方程根與系數(shù)關(guān)系得,xM+xN=-
3
2
,xM•xN=a-6,進(jìn)而求出yM•yN=
1
4
(a-6)-
3
4
a+a2
①由于∠MON=90°,根據(jù)勾股定理得出OM2+ON2=MN2,據(jù)此列出關(guān)于a的方程,解方程即可求出a的值;
②由于∠MON>90°,根據(jù)勾股定理得出OM2+ON2<MN2,據(jù)此列出關(guān)于a的不等式,解不等式即可求出a的范圍.
解答:解:(1)∵拋物線y=-x2+bx+c,當(dāng)x=-
1
2
時(shí),y取最大值
25
4
,
∴拋物線的解析式是:y=-(x+
1
2
2+
25
4
,即y=-x2-x+6;
當(dāng)x=0時(shí),y=6,即C點(diǎn)坐標(biāo)是(0,6),
當(dāng)y=0時(shí),-x2-x+6=0,解得:x=2或-3,
即A點(diǎn)坐標(biāo)是(-3,0),B點(diǎn)坐標(biāo)是(2,0).
將A(-3,0),C(0,6)代入直線AC的解析式y(tǒng)=kx+m,
-3k+m=0
m=6
,
解得:
k=2
m=6

則直線的解析式是:y=2x+6;

(2)過點(diǎn)B作BD⊥AC,D為垂足,
∵S△ABP:S△BPC=1:3,
1
2
AP•BD
1
2
PC•BD
=
1
3
,
∴AP:PC=1:3,
由勾股定理,得AC=
OA2+OC2
=3
5

①當(dāng)點(diǎn)P為線段AC上一點(diǎn)時(shí),過點(diǎn)P作PH⊥x軸,點(diǎn)H為垂足.
∵PH∥OC,
PH
OC
=
AP
AC
=
1
4
,
∴PH=
3
2
,
3
2
=2x+6,
∴x=-
9
4
,
∴點(diǎn)P(-
9
4
3
2
);
當(dāng)點(diǎn)P在CA延長(zhǎng)線時(shí),作PG⊥x軸,點(diǎn)G為垂足.
∵AP:PC=1:3,
∴AP:AC=1:2.
∵PG∥OC,
PG
OC
=
AP
AC
=
1
2

∴PG=3,
∴-3=2x+6,x=-
9
2
,
∴點(diǎn)P(-
9
2
,-3).
綜上所述,點(diǎn)P的坐標(biāo)為(-
9
4
,
3
2
)或(-
9
2
,-3).

(3)設(shè)直線y=
1
2
x+a與拋物線y=-x2-x+6的交點(diǎn)為M(xM,yM),N(xN,yN)(M在N左側(cè)).
x1=xM
y1=yN
,
x2=xN
y2=yN
為方程組
y=
1
2
x+a
y=-x2-x+6
的解,
由方程組消去y整理,得:x2+
3
2
x+a-6=0,
∴xM、xN是方程x2+
3
2
x+a-6=0的兩個(gè)根,
∴xM+xN=-
3
2
,xM•xN=a-6,
∴yM•yN=(
1
2
xM+a)(
1
2
xN+a)=
1
4
xM•xN+
a
2
(xM+xN)+a2=
1
4
(a-6)-
3
4
a+a2
①存在a的值,使得∠MON=90°.理由如下:
∵∠MON=90°,
∴OM2+ON2=MN2,即
x
2
M
+
y
2
M
+
x
2
N
+
y
2
N
=(xM-xN2+(yM-yN2
化簡(jiǎn)得xM•xN+yM•yN=0,
∴(a-6)+
1
4
(a-6)-
3
4
a+a2=0,
整理,得2a2+a-15=0,
解得a1=-3,a2=
5
2
,
∴存在a值,使得∠MON=90°,其值為a=-3或a=
5
2
;
②∵∠MON>90°,
∴OM2+ON2<MN2,即
x
2
M
+
y
2
M
+
x
2
N
+
y
2
N
<(xM-xN2+(yM-yN2,
化簡(jiǎn)得xM•xN+yM•yN<0,
∴(a-6)+
1
4
(a-6)-
3
4
a+a2<0,
整理,得2a2+a-15<0,
解得-3<a<
5
2

∴當(dāng)∠MON>90°時(shí),a的取值范圍是-3<a<
5
2
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合題型,其中涉及到運(yùn)用待定系數(shù)法求函數(shù)的解析式,二次函數(shù)的性質(zhì),三角形的面積,平行線分線段成比例定理,函數(shù)與方程的關(guān)系,勾股定理,鈍角三角形三邊的關(guān)系等知識(shí),綜合性較強(qiáng),難度較大.運(yùn)用分類討論、數(shù)形結(jié)合及方程思想是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃石)如圖,下列四個(gè)幾何體中,它們各自的三視圖(主視圖、左視圖、俯視圖)有兩個(gè)相同,而另一個(gè)不同的幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃石)如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB交于點(diǎn)D,則AD的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃石)如圖,已知某容器都是由上下兩個(gè)相同的圓錐和中間一個(gè)與圓錐同底等高的圓柱組合而成,若往此容器中注水,設(shè)注入水的體積為y,高度為x,則y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃石)如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點(diǎn)D,請(qǐng)問點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請(qǐng)問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對(duì)角線AC、BD交于點(diǎn)F,延長(zhǎng)AB、DC交于點(diǎn)E,連接EF交梯形上、下底于G、H兩點(diǎn),請(qǐng)問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案