【題目】如圖1,△ABE是等腰三角形,AB=AE,∠BAE=45°,過點B作BC⊥AE于點C,在BC上截取CD=CE,連接AD、DE并延長AD交BE于點P;
(1)求證:AD=BE;
(2)試說明AD平分∠BAE;
(3)如圖2,將△CDE繞著點C旋轉(zhuǎn)一定的角度,那么AD與BE的位置關(guān)系是否發(fā)生變化,說明理由.

【答案】
(1)解:∵BC⊥AE,∠BAE=45°,

∴∠CBA=∠CAB,

∴BC=CA,

在△BCE和△ACD中,

∴△BCE≌△ACD,

∴AD=BE.


(2)解:∵△BCE≌△ACD,

∴∠EBC=∠DAC,

∵∠BDP=∠ADC,

∴∠BPD=∠DCA=90°,

∵AB=AE,

∴AD平分∠BAE.


(3)解:AD⊥BE不發(fā)生變化.

如圖2,

∵△BCE≌△ACD,

∴∠EBC=∠DAC,

∵∠BFP=∠ACF,

∴∠BPF=∠ACF=90°,

∴AD⊥BE.


【解析】(1)利用SAS證明△BCE≌△ACD,根據(jù)全等三角形的對應(yīng)邊相等得到AD=BE.(2)根據(jù)△BCE≌△ACD,得到∠EBC=∠DAC,由∠BDP=∠ADC,得到∠BPD=∠DCA=90°,利用等腰三角形的三線合一,即可得到AD平分∠BAE;(3)AD⊥BE不發(fā)生變化.由△BCE≌△ACD,得到∠EBC=∠DAC,由對頂角相等得到∠BFP=∠ACF,根據(jù)三角形內(nèi)角和為180°,所以∠BPF=∠ACF=90°,即AD⊥BE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】往一個長25m,寬11m的長方體游泳池注水,水位每小時上升0.32m,
(1)寫出游泳池水深d(m)與注水時間x(h)的函數(shù)表達(dá)式;
(2)如果x(h)共注水y(m3),求y與x的函數(shù)表達(dá)式;
(3)如果水深1.6m時即可開放使用,那么需往游泳池注水幾小時?注水多少(單位:m3)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件,使△ABE≌△CDF,則添加的條件不能為(  )

A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P(m+3,m)在直角坐標(biāo)系的x軸上,則點P的坐標(biāo)為( ).

A. (0,3) B. (-3,0) C. (3,0) D. (0,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在平面直角坐標(biāo)系中,直線l與y軸相交于點A(0,m)其中m<0,與x軸相交于點B(4,0).拋物線y=ax2+bx(a>0)的頂點為F,它與直線l相交于點C,其對稱軸分別與直線l和x軸相交于點D和點E.

(1)設(shè)a=,m=﹣2時,

①求出點C、點D的坐標(biāo);

②拋物線y=ax2+bx上是否存在點G,使得以G、C、D、F四點為頂點的四邊形為平行四邊形?如果存在,求出點G的坐標(biāo);如果不存在,請說明理由.

(2)當(dāng)以F、C、D為頂點的三角形與△BED相似且滿足三角形FAC的面積與三角形FBC面積之比為1:3時,求拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列給出的各組線段的長度中,能組成三角形的是( )

A. 4,5,6B. 6,8,15C. 5,712D. 3,7,13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:甲、乙兩車分別從相距300(km)的M、N兩地同時出發(fā)相向而行,其中甲到達(dá)N地后立即返回,圖1、圖2分別是它們離各自出發(fā)地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象.

1試求線段AB所對應(yīng)的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2當(dāng)它們行駛到與各自出發(fā)地距離相等時,用了4.5h),求乙車的速度;

3在(2)的條件下,求它們在行駛的過程中相遇的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有 個選項,第二道單選題有個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).

)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是__________.

)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明通關(guān)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老王以每千克0.8元的價格從批發(fā)市場購進(jìn)若干千克西瓜到市場銷售,在銷售了部分西瓜后,余下的每千克降價0.2元,全部售完,銷售金額與賣瓜的千克數(shù)之間的關(guān)系如圖所示,那么老王賺了( )

A.32元
B.36元
C.38元
D.44元

查看答案和解析>>

同步練習(xí)冊答案