【題目】在平面直角標系中,已知△ABC三個頂點的坐標分別為A(﹣1,2),B(﹣3,4),C(﹣1,6).
(1)畫出△ABC,并求出BC所在直線的解析式;
(2)畫出△ABC繞點A順時針旋轉(zhuǎn)90°后得到的△AB1C1,并求出△ABC在上述旋轉(zhuǎn)過程中掃過的面積.
科目:初中數(shù)學 來源: 題型:
【題目】(問題情境)
我們知道若一個矩形是的周長固定,當相鄰兩邊相等,即為正方形時,它的面積最大.反過來,若一個矩形的面積固定,它的周長是否會有最值呢?
(探究方法)
用兩個直角邊分別為,的4個全等的直角三角形可以拼成一個正方形。若,可以拼成如圖所示的正方形,從而得到,即;當時,中間小正方形收縮為1個點,此時正方形的面積等于4個直角三角形面積的和.即.于是我們可以得到結(jié)論:,為正數(shù),總有,當且僅當時,代數(shù)式取得最小值.另外,我們也可以通過代數(shù)式運算得到類似上面的結(jié)論:
∵,∴,
∴對于任意實數(shù),總有,且當時,代數(shù)式取最小值.
使得上面的方法,對于正數(shù),,試比較和的大小關(guān)系.
(類比應用)
利用上面所得到的結(jié)論完成填空
(1)當時,代數(shù)式有最 值為 .
(2)當時,代數(shù)式有最 值為 .
(3)如圖,已知是反比例函數(shù)圖象上任意一動點,,,試求的最小面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC頂點的坐標分別為A(﹣3,3),B(﹣5,2),C(﹣1,1).
(1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2,且ABC位于點C的異側(cè),并表示出點A1的坐標.
(2)作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C.
(3)在(2)的條件下求出點B經(jīng)過的路徑長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,過點A作⊙O的切線交BC的延長線于點D.
(1)求證:△DAC∽△DBA;
(2)過點C作⊙O的切線CE交AD于點E,求證:CE=AD;
(3)若點F為直徑AB下方半圓的中點,連接CF交AB于點G,且AD=6,AB=3,求CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以點O為圓心的圓分別交x軸的正半軸于點M,交y軸的正半軸于點N.劣弧的長為,直線與x軸、y軸分別交于點A、B.
(1)求證:直線AB與⊙O相切;
(2)求圖中所示的陰影部分的面積(結(jié)果用π表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,E、F分別在OD、OC上,且DE=CF,連接DF、AE,AE的延長線交DF于點M.
(1)求證:AE=DF;
(2)求證:AM⊥DF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,點分別在邊上,點分別在邊上,且.
如圖2,過點作于點過點作于點可知四邊形四邊形四邊形四邊形都是矩形,即,通過證明可求得的值為_ .
如圖3,在正方形中,點分別在邊上,于點,則的值為 .
如圖4,在的條件下,延長交的延長線于點連接交于點.若求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A在反比例函數(shù) 的圖象上,作,邊BC在x軸上,點D為斜邊AC的中點,連結(jié)DB并延長交y軸于點E,若的面積為6,則k=___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=4.0為BC邊上一點,以0為圓心,OB為半徑作半圓與BC邊和AB邊分別交于點D、點E,連接DE.
(1)當BD=3時,求線段DE的長;
(2)過點E作半圓O的切線,當切線與AC邊相交時,設交點為F.求證:△FAE是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com