【題目】如圖,在△ABC中,∠C=90°,點E在AB上,以AE為直徑的⊙O與BC相切于點D,連接AD.
(1)求證:AD平分∠BAC;
(2)若⊙O的直徑為10,sin∠DAC= ,求BD的長.

【答案】
(1)解:連接OD.

∵OD、OA是⊙O的半徑,

∴OA=OD.

∴∠OAD=∠ODA.

∵點D是⊙O的切點,

∴∠ODC=90°

又∵∠C=90°,

∴OD∥AC.

∴∠ODA=∠DAC,

∴∠OAD=∠CAD,

∴AD平分∠BAC.


(2)解:如圖2所示:連接ED.

∵⊙O的半徑為5,AE是圓O的直徑,

∴AE=10,∠EDA=90°.

∵∠EAD=∠CAD,sin∠DAC= ,

∴AD= ×10=4

∴DC= ×4 =4,AC= ×4 =8.

∵OD∥AC,

∴△BOD∽△BAC,

= ,即 = ,

解得:BD=


【解析】(1)連接OD.先依據(jù)平行線的判定定理證明OD∥AC,然后依據(jù)平行線的性質和等腰三角形的性質證明∠OAD=∠DAC,于是可證明AD平分∠BAC.(2)連接ED、OD.由題意可知AE=10.接下來,在△ADA中,依據(jù)銳角三角函數(shù)的定義可求得AD的長,然后在△ADC中,可求得DC和AC的長,由OD∥AC可證明△BOD∽△BAC,然后由相似三角形的性質可列出關于BD的方程.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=kx+b(k≠0)與雙曲線y= (m≠0)交于點A(2,﹣3)和點B(n,2).
(1)求直線與雙曲線的表達式;
(2)對于橫、縱坐標都是整數(shù)的點給出名稱叫整點.動點P是雙曲線y= (m≠0)上的整點,過點P作垂直于x軸的直線,交直線AB于點Q,當點P位于點Q下方時,請直接寫出整點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,BAC=90°,點D是直線AB上的一動點(不和A、B重合),BECDE,交直線ACF.

(1)D在邊AB上時,請證明:BD=AB﹣AF;

(2)試探索:點DAB的延長線或反向延長線上時,請在備用圖中畫出圖形,(1)中的結論是否成立?若不成立,請直接寫出正確結論(不需要證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知ABCD,AB//x軸,AB=6,點A的坐標為(1,-4),點D的坐標為(-3,4),點B在第四象限,點P是ABCD邊上的一個動點.

(1)若點P在邊BC上,PD=CD,求點P的坐標.
(2)若點P在邊AB,AD上,點P關于坐標軸對稱的點Q落在直線y=x-1上,求點P的坐標.
(3)若點P在邊AB,AD,CD上,點G是AD與y軸的交點,如圖2,過點P作y軸的平行線PM,過點G作x軸的平行線GM,它們相交于點M,將△PGM沿直線PG翻折,當點M的對應點落在坐標軸上時,求點P的坐標(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中邊AB的垂直平分線分別交BC,AB于點D,E,AE=3cm,ADC的周長為9cm,ABC的周長是(

A. 10cm B. 12cm C. 15cm D. 17cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究:

如圖,在△ABC中,點D、E、F分別在邊AB、AC、CB上,且DEBC,EFAB,若∠ABC=65°,求∠DEF的度數(shù).請將下面的解答過程補充完整,并填空(理由或數(shù)學式):

解:∵DEBC(   )

∴∠DEF   (   )

EFAB

   =∠ABC(   )

∴∠DEF=∠ABC(   )

∵∠ABC=65°

∴∠DEF   

應用:

如圖,在△ABC中,點D、EF分別在邊AB、ACBC的延長線上,且DEBC,EFAB,若∠ABC=β,則∠DEF的大小為   (用含β的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.

(1)求∠AOE的度數(shù);

(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大。

閱讀下面的解答過程,并填空(理由或數(shù)學式)

解:∵BEGF(已知)

∴∠2=∠3(   )

∵∠1=∠3(   )

∴∠1=(   )(   )

DE∥(   )(   )

∴∠EDB+∠DBC=180°(   )

∴∠EDB=180°﹣∠DBC(等式性質)

∵∠DBC=(   )(已知)

∴∠EDB=180°﹣70°=110°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,BE平分∠ABCDE平分∠ADC,∠BAD70°,∠BCD40°,則∠BED的度數(shù)為______

查看答案和解析>>

同步練習冊答案