【題目】已知二次函數(shù)的部分圖象如圖所示,則關于的一元二次方程的解為

【答案】x1=-1x2=3

【解析】

試題由二次函數(shù)y=﹣x2+2x+m的部分圖象可以得到拋物線的對稱軸和拋物線與x軸的一個交點坐標,然后可以求出另一個交點坐標,再利用拋物線與x軸交點的橫坐標與相應的一元二次方程的根的關系即可得到關于x的一元二次方程﹣x2+2x+m=0的解.

解:依題意得二次函數(shù)y=﹣x2+2x+m的對稱軸為x=1,與x軸的一個交點為(3,0),

拋物線與x軸的另一個交點橫坐標為1﹣3﹣1=﹣1

交點坐標為(﹣1,0

x=﹣1x=3時,函數(shù)值y=0,

﹣x2+2x+m=0,

關于x的一元二次方程﹣x2+2x+m=0的解為x1=﹣1x2=3

故答案為:x1=﹣1x2=3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.則下列結論:①abc>0;②9a+3b+c>0;③c>﹣1;④關于x的方程ax2+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<2<x2,且x1+x2>4,則y1>y2.其中正確的結論有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的頂點A和對稱中心在反比例函數(shù)y=(k≠0,x>0)上,若矩形ABCD的面積為8,則k的值為( 。

A. 8 B. 3 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A坐標(6,0),點B在y軸上,點C在第三象限角平分線上,動點P、Q同時從點O出發(fā),點P以1cm/s 的速度沿O→A→B勻速運動到終點B;點Q沿O→C→B→A運動到終點A,點Q在線段OC、CB、BA上分別作勻速運動,速度分別為V1cm/s、V2cm/s、V3cm/s.設點P運動的時間為t(s),△OPQ的面積為S(cm2),已知S與t之間的部分函數(shù)關系如圖(2)中的曲線段OE、曲線段EF和線段FG所示.

(1)V1=  ,V2=  

(2)求曲線段EF的解析式;

(3)補全函數(shù)圖象(請標注必要的數(shù)據);

(4)當點P、Q在運動過程中是否存在這樣的t,使得直線PQ把四邊形OABC的面積分成11:13兩部分,若存在直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,EB=EC,AE的延長線交BCD,則圖中全等的三角形共有_____對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點H、G分別是邊CD、BC上的動點.連接AH、HG,點EAH的中點,點FGH的中點,連接EF.則EF的最大值與最小值的差為( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD的頂點A、D分別落在x軸、y軸,OD=2OA=6ADAB=31.則點B的坐標是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)我們已經知道,在中,如果,則,下面我們繼續(xù)研究:如圖①,在中,如果,則的大小關系如何?為此,我們把沿的平分線翻折,因為,所以點落在邊的點處,如圖②所示,然后把紙展平,連接,接下來,你能推出的大小關系了嗎?試寫出說理過程.

2)如圖③,在中,是角平分線,且,求證:.

3)在(2)的條件下,若點、分別為、上的動點,且,,則的最小值為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:學習了分式運算后,老師布置了這樣一道計算題:,甲、乙兩位同學的解答過程分別如下:

甲同學:

乙同學:

老師發(fā)現(xiàn)這兩位同學的解答過程都有錯誤.

請你從甲、乙兩位同學中,選擇一位同學的解答過程,幫助他分析錯因,并加以改正.

1)我選擇________同學的解答過程進行分析. (填

2)該同學的解答從第________步開始出現(xiàn)錯誤(填序號),錯誤的原因是________

3)請寫出正確解答過程.

查看答案和解析>>

同步練習冊答案