(2006•河北)如圖1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動,將三角尺GEF繞斜邊EF的中點O(點O也是BD中點)按順時針方向旋轉(zhuǎn).
(1)如圖2,當(dāng)EF與AB相交于點M,GF與BD相交于點N時,通過觀察或測量BM,F(xiàn)N的長度,猜想BM,F(xiàn)N滿足的數(shù)量關(guān)系,并證明你的猜想;
(2)若三角尺GEF旋轉(zhuǎn)到如圖3所示的位置時,線段FE的延長線與AB的延長線相交于點M,線段BD的延長線與GF的延長線相交于點N,此時,(1)中的猜想還成立嗎?若成立,請證明;若不成立,請說明理由.

【答案】分析:(1)根據(jù)正方形和等腰直角三角形的性質(zhì)可證明△OBM≌△OFN,所以根據(jù)全等的性質(zhì)可知BM=FN;
(2)同(1)中的證明方法一樣,根據(jù)正方形和等腰直角三角形的性質(zhì)得OB=OF,∠MBO=∠NFO=135°,∠MOB=∠NOF,可證△OBM≌△OFN,所以BM=FN.
解答:(1)BM=FN.
證明:∵△GEF是等腰直角三角形,四邊形ABCD是正方形,
∴∠ABD=∠F=45°,OB=OF,
在△OBM與△OFN中,
∴△OBM≌△OFN(ASA),
∴BM=FN;

(2)BM=FN仍然成立.
證明:∵△GEF是等腰直角三角形,四邊形ABCD是正方形,
∴∠DBA=∠GFE=45°,OB=OF,
∴∠MBO=∠NFO=135°,
在△OBM與△OFN中,
∴△OBM≌△OFN(ASA),
∴BM=FN.
點評:本題考查旋轉(zhuǎn)知識在幾何綜合題中運用,旋轉(zhuǎn)前后許多線段相等,本題以實驗為背景,探索在不同位置關(guān)系下線段的關(guān)系,為中考常見的題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年山東省東營市中考模擬考試五校聯(lián)考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•河北)如圖所示,一條河的兩岸有一段是平行的,在河的南岸邊每隔5米有一棵樹,在北岸邊每隔50米有一根電線桿.小麗站在離南岸邊15米的點P處看北岸,發(fā)現(xiàn)北岸相鄰的兩根電線桿恰好被南岸的兩棵樹遮住,并且在這兩棵樹之間還有三棵樹,則河寬為    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省鹽城市鹽城中學(xué)初三年級中考模擬數(shù)學(xué)試卷2(解析版) 題型:解答題

(2006•河北)如圖,在Rt△ABC中,∠C=90°,AC=12,BC=16,動點P從點A出發(fā)沿AC邊向點C以每秒3個單位長的速度運動,動點Q從點C出發(fā)沿CB邊向點B以每秒4個單位長的速度運動.P,Q分別從點A,C同時出發(fā),當(dāng)其中一點到達(dá)端點時,另一點也隨之停止運動.在運動過程中,△PCQ關(guān)于直線PQ對稱的圖形是△PDQ.設(shè)運動時間為t(秒).
(1)設(shè)四邊形PCQD的面積為y,求y與t的函數(shù)關(guān)系式;
(2)t為何值時,四邊形PQBA是梯形;
(3)是否存在時刻t,使得PD∥AB?若存在,求出t的值;若不存在,請說明理由;
(4)通過觀察、畫圖或折紙等方法,猜想是否存在時刻t,使得PD⊥AB?若存在,請估計t的值在括號中的哪個時間段內(nèi)(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年河北省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2006•河北)如圖是由邊長為1m的正方形地磚鋪設(shè)的地面示意圖,小明沿圖中所示的折線從A?B?C所走的路程為    m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年河北省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2006•河北)如圖是華聯(lián)商廈某個月甲、乙、丙三種品牌彩電的銷售量統(tǒng)計圖,則甲、丙兩種品牌彩電該月的銷售量之和為( )

A.50臺
B.65臺
C.75臺
D.95臺

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年河北省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•河北)如圖,在四邊形ABCD中,AB=CD,BC=AD,若∠A=110°,則∠C=    度.

查看答案和解析>>

同步練習(xí)冊答案