【題目】
(1)計算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°;
(2)解不等式組,并在數(shù)軸上表示不等式組的解集.

【答案】
(1)

【解答】解:原式=﹣+1+﹣2﹣2×

=+﹣2﹣

=;


(2)

,

解①得x<1,

解②得x≥﹣1,

把解集表示在數(shù)軸上為:

,

不等式組的解集為﹣1≤x<1.


【解析】(1)根據(jù)負整數(shù)指數(shù)冪、零指數(shù)冪、絕對值、特殊角的三角函數(shù)值四個考點進行計算結果即可;
(2)先解每一個不等式,再把解集畫在數(shù)軸上即可.
【考點精析】利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質對題目進行判斷即可得到答案,需要熟知零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某地政府計劃為農戶購買農機設備提供補貼.其中購買Ⅰ型、Ⅱ型設備農民所投資的金額與政府補貼的額度存在下表所示的函數(shù)對應關系.

型號
金額

Ⅰ型設備

Ⅱ型設備

投資金額x(萬元)

x

5

x

2

4

補貼金額y(萬元)

y1=kx(k≠0)

2

y2=ax2+bx(a≠0)

2.8

4


(1)分別求y1和y2的函數(shù)解析式;
(2)有一農戶共投資10萬元購買Ⅰ型、Ⅱ型兩種設備,兩種設備的投資均為整數(shù)萬元,要想獲得最大補貼金額,應該如何購買?能獲得的最大補貼金額為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,AC平分∠BAD,AD⊥DC,垂足為D,OE⊥AC,垂足為E.

(1)求證:DC是⊙O的切線;
(2)若OE=cm,AC=cm,求DC的長(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以ABCO的頂點O為原點,邊OC所在直線為x軸,建立平面直角坐標系,頂點A、C的坐標分別是(2,4)、(3,0),過點A的反比例函數(shù)的圖象交BC于D,連接AD,則四邊形AOCD的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若在“正三角形、平行四邊形、菱形、正五邊形、正六邊形”這五種圖形中隨機抽取一種圖形,則抽到的圖形屬于中心對稱圖形的概率是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸l為x=﹣1.

(1)求拋物線的解析式并寫出其頂點坐標;
(2)若動點P在第二象限內的拋物線上,動點N在對稱軸l上.
①當PA⊥NA,且PA=NA時,求此時點P的坐標;
②當四邊形PABC的面積最大時,求四邊形PABC面積的最大值及此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,已知拋物線y=﹣x2+4x+5的頂點為D,與x軸交于A、B兩點,與y軸交于C點,E為對稱軸上的一點,連接CE,將線段CE繞點E按逆時針方向旋轉90°后,點C的對應點C′恰好落在y軸上.

(1)直接寫出D點和E點的坐標;
(2)點F為直線C′E與已知拋物線的一個交點,點H是拋物線上C與F之間的一個動點,若過點H作直線HG與y軸平行,且與直線C′E交于點G,設點H的橫坐標為m(0<m<4),那么當m為何值時,S△HGF:S△BGF=5:6?
(3)圖2所示的拋物線是由y=﹣x2+4x+5向右平移1個單位后得到的,點T(5,y)在拋物線上,點P是拋物線上O與T之間的任意一點,在線段OT上是否存在一點Q,使△PQT是等腰直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校體育社團在校內開展“最喜歡的體育項目(四項選一項)”調查,對九年級學生隨機抽樣,并將收集的數(shù)據(jù)繪制成如圖兩幅不完整的統(tǒng)計圖,請結合統(tǒng)計

圖解答下列問題:
(1)求本次抽樣人數(shù)有多少人?
(2)補全條形統(tǒng)計圖;
(3)該校九年級共有600名學生,估計九年級最喜歡跳繩項目的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A(3,0),二次函數(shù)圖象的對稱軸是直線x=1,下列結論正確的是( 。

A.
B.ac>0
C.2a﹣b=0
D.a﹣b+c=0

查看答案和解析>>

同步練習冊答案