解方程:
(1) (x-2)2=25;
(2) x2+4x+3=0;
(3) 2x2+4x-1=0.
【答案】分析:(1)利用直接開平方法求解,即得到x-2=±5;
(2)利用因式分解法解方程,即變形為:(x+3)(x+1)=0;
(3)把a(bǔ)=2,b=4,c=-1代入一元二次方程的求根公式計(jì)算即可.
解答:解:(1)方程兩邊開方得,x-2=±5,
∴x-2=5或x-2=-5,
∴x1=7,x2=-3.
(2)方程變形為:(x+3)(x+1)=0,
∴x+3=0或x+1=0,
∴x1=-1,x2=-3.
(3)∵a=2,b=4,c=-1,
∴b2-4ac=42-4×2×(-1)=24,
x===
∴x1=,x2=
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的求根公式:x=(b2-4ac≥0).也考查了解一元二次方程要選用適當(dāng)?shù)姆椒ǎ?
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、解方程x2-|x|-2=0,
解:1.當(dāng)x≥0時(shí),原方程化為x2-x-2=0,解得:x1=2,x2=-1[不合題意,舍去].
2.當(dāng)x<o(jì)時(shí),原方程化為:x2+x-2=0,解得:x1=1,(不合題意,舍去)x2=-2.所以原方程的根為:x1=2,x2=-2
請(qǐng)參照例題解方程:x2-|x-1|-1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解方程:4(x-1)=1-x
(2)解方程:
x+1
2
-
2-3x
3
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程:
x-
x-1
2
=
2
3
-
x+2
3

解:去分母,得6x-3x+1=4-2x+4…①
即-3x+1=-2x+8…②
移項(xiàng),得-3x+2x=8-1…③
合并同類項(xiàng),得-x=7…④
∴x=-7…⑤
上述解方程的過(guò)程中,是否有錯(cuò)誤?答:
 
;如果有錯(cuò)誤,則錯(cuò)在
 
步.如果上述解方程有錯(cuò)誤,請(qǐng)你給出正確的解題過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算與解方程:
(1)
3-x
2x-4
÷(x+2-
5
x-2
)

(2)
x
x-y
y2
x+y
-
x4y
x4-y4
÷
x2
x2+y2
;
(3)
5
2x+3
=
3
x-1

(4)
x
x+2
-
x+2
x-2
=
8
x2-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各題:
(1)先化簡(jiǎn)再求值:
x2+x
x
÷(x+1)+
x2-x-2
x-2
,(其中x=-3).
(2)解方程
1
x+1
+
2
x-1
=
4
x2-1

查看答案和解析>>

同步練習(xí)冊(cè)答案