精英家教網 > 初中數學 > 題目詳情
(2012•益陽)已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點,AE⊥BF于點G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現將△ABE繞點A逆時針方向旋轉到△AB′E′(如圖2),使點E落在CD邊上的點E′處,問△ABE在旋轉前后與△BCF重疊部分的面積是否發(fā)生了變化?請說明理由.
分析:(1)由四邊形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由AE⊥BF,由同角的余角相等,即可證得∠BAE=∠CBF,然后利用ASA,即可判定:△ABE≌△BCF;
(2)由正方形ABCD的面積等于3,即可求得此正方形的邊長,由在△BGE與△ABE中,∠GBE=∠BAE,∠EGB=∠EBA=90°,可證得△BGE∽△ABE,由相似三角形的面積比等于相似比的平方,即可求得答案;
(3)首先由正切函數,求得∠BAE=30°,易證得Rt△ABE≌Rt△AB′E′≌Rt△ADE′,可得AB′與AE在同一直線上,即BF與AB′的交點是G,然后設BF與AE′的交點為H,可證得△BAG≌△HAG,繼而證得結論.
解答:(1)證明:∵四邊形ABCD是正方形,
∴∠ABE=∠BCF=90°,AB=BC,
∴∠ABF+∠CBF=90°,
∵AE⊥BF,
∴∠ABF+∠BAE=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
∠ABE=∠BCF
AB=BC
∠BAE=∠CBF

∴△ABE≌△BCF.…(4分)

(2)解:∵正方形面積為3,
∴AB=
3
,…(5分)
在△BGE與△ABE中,
∵∠GBE=∠BAE,∠EGB=∠EBA=90°,
∴△BGE∽△ABE,…(7分)
S△BGE
S△ABE
=(
BE
AE
)2
,
又∵BE=1,
∴AE2=AB2+BE2=3+1=4,
∴S△BGE=
BE2
AE2
×S△ABE=
1
4
×
3
2
=
3
8
.…(8分)

(3)解:沒有變化. …(9分)
理由:∵AB=
3
,BE=1,
∴tan∠BAE=
1
3
=
3
3
,∠BAE=30°,…(10分)
∵AB′=AB=AD,∠AB′E′=∠ADE'=90°,AE′公共,
∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,
∴∠DAE′=∠B′AE′=∠BAE=30°,
∴AB′與AE在同一直線上,即BF與AB′的交點是G,
設BF與AE′的交點為H,
則∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共,
∴△BAG≌△HAG,…(11分)
∴S四邊形GHE′B′=S△AB′E′-S△AGH=S△ABE-S△ABG=S△BGE
∴△ABE在旋轉前后與△BCF重疊部分的面積沒有變化.…(12分)
點評:此題考查了相似三角形的判定與性質、正方形的性質、全等三角形的判定與性質以及三角函數等知識.此題綜合性較強,難度較大,注意掌握旋轉前后圖形的對應關系,注意數形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•益陽)如圖,已知AE∥BC,AE平分∠DAC.
求證:AB=AC.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•益陽)為響應市政府“創(chuàng)建國家森林城市”的號召,某小區(qū)計劃購進A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.
(1)若購進A、B兩種樹苗剛好用去1220元,問購進A、B兩種樹苗各多少棵?
(2)若購買B種樹苗的數量少于A種樹苗的數量,請你給出一種費用最省的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•益陽)觀察圖形,解答問題:

(1)按下表已填寫的形式填寫表中的空格:
圖① 圖② 圖③
三個角上三個數的積 1×(-1)×2=-2 (-3)×(-4)×(-5)=-60
三個角上三個數的和 1+(-1)+2=2 (-3)+(-4)+(-5)=-12
積與和的商 -2÷2=-1,
(2)請用你發(fā)現的規(guī)律求出圖④中的數y和圖⑤中的數x.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•益陽)已知:如圖,拋物線y=a(x-1)2+c與x軸交于點A(1-
3
,0)和點B,將拋物線沿x軸向上翻折,頂點P落在點P'(1,3)處.
(1)求原拋物線的解析式;
(2)學校舉行班徽設計比賽,九年級5班的小明在解答此題時頓生靈感:過點P'作x軸的平行線交拋物線于C、D兩點,將翻折后得到的新圖象在直線CD以上的部分去掉,設計成一個“W”型的班徽,“5”的拼音開頭字母為W,“W”圖案似大鵬展翅,寓意深遠;而且小明通過計算驚奇的發(fā)現這個“W”圖案的高與寬(CD)的比非常接近黃金分割比
5
-1
2
(約等于0.618).請你計算這個“W”圖案的高與寬的比到底是多少?(參考數據:
5
≈2.236
,
6
≈2.449
,結果可保留根號)

查看答案和解析>>

同步練習冊答案