如圖,已知EF∥AD,∠1 =∠2,∠BAC=65º.請將求∠AGD的過程填寫完整.

解:∵EF∥AD(    )

∴∠2=      (    )

又∵∠1=∠2

∴∠1=∠3(    )

∴AB∥      (    )

∴∠BAC+      =180º.

又∵∠BAC=65º

∴∠AGD=     

 

【答案】

已知;∠3;兩直線平行,同位角相等;等式的性質(zhì);DG;內(nèi)錯角相等,兩直線平行;∠AGD;115°

【解析】根據(jù)平行線的判定與性質(zhì)填空.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,已知EF∥AD,∠1=∠2,∠BAC=68°.求∠AGD的度數(shù).
請你完成下面的解題步驟:
解:因為EF∥AD,所以∠1=
∠3

又因為∠1=∠2,所以∠2=
∠3

所以AB∥
DG

所以∠BAC+
∠AGD
=180°.
因為∠BAC=68°,所以∠AGD=
112°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知EF∥AD,∠1=∠2.證明:∠DGA+∠BAC=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省建德市李家鎮(zhèn)初級中學(xué)七年級3月月考數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,已知EF∥AD,∠1=∠2,∠BAC=65º.請將求∠AGD的過程填寫完整.

解:∵EF∥AD
∴∠2=            
又∵∠1=∠2
∴∠1=∠3
∴AB∥            
∴∠BAC+      =180º.
又∵∠BAC=65º
∴∠AGD=      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015屆浙江省建德市七年級3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知EF∥AD,∠1=∠2,∠BAC=65º.請將求∠AGD的過程填寫完整.

解:∵EF∥AD

∴∠2=            

又∵∠1=∠2

∴∠1=∠3

∴AB∥            

∴∠BAC+      =180º.

又∵∠BAC=65º

∴∠AGD=      

 

查看答案和解析>>

同步練習(xí)冊答案