已知x,y,z都是大于0且小于1的實(shí)數(shù),則x(1-y)+y(1-z)+z(1-x)的值( 。
A.大于1B.等于1
C.小于1D.大于或等于1
如圖,作邊長為1的等邊三角形,
設(shè)BF=x,AE=y,CD=z,
則S△BEF=
1
2
BF•BE=
1
2
x•
3
2
(1-y)=
3
4
x(1-y),
同理:S△AED=
3
4
y(1-z),
S△CDF=
3
4
z(1-x),
S△ABC=
1
2
×1×
3
2
=
3
4
,
∵S△BEF+S△AED+S△CDF<S△ABC
3
4
x(1-y)+
3
4
y(1-z)+
3
4
z(1-x)<
3
4
,
∴x(1-y)+y(1-z)+z(1-x)<1.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:D、E為BC邊上的點(diǎn),AD=AE,BD=EC.求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖所示,等邊三角形ABC的邊長為2,點(diǎn)P和Q分別從A和C兩點(diǎn)同時(shí)出發(fā),做勻速運(yùn)動(dòng),且它們的速度相同.點(diǎn)P沿射線AB運(yùn)動(dòng),點(diǎn)Q沿邊BC的延長線運(yùn)動(dòng),設(shè)PQ與直線AC相交于點(diǎn)D,作PE⊥AC于E,當(dāng)P和Q運(yùn)動(dòng)時(shí),線段DE的長是否改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

邊長為4的正三角形的高為(  )
A.2B.4C.
3
D.2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=120°,CD平分∠ACB,AEDC,交BC的延長線于點(diǎn)E,試說明△ACE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在等邊△ABC中,AC=3,點(diǎn)O在AC上,且AO=1.點(diǎn)P是AB上一點(diǎn),連接OP,以線段OP為一邊作正△OPD,且O、P、D三點(diǎn)依次呈逆時(shí)針方向,當(dāng)點(diǎn)D恰好落在邊BC上時(shí),則AP的長是( 。
A.1B.1.5C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了使同學(xué)們更好地解答本題,我們提供了思路點(diǎn)撥,你可以依照這個(gè)思路填空,并完成本題解答的全過程,當(dāng)然你也可以不填空,只需按照解答的一般要求,進(jìn)行解答即可.
如圖,已知AB=AD,∠BAD=60°,∠BCD=120°,延長BC,使CE=CD,連接DE,求證:BC+DC=AC.
思路點(diǎn)撥:
(1)由已知條件AB=AD,∠BAD=60°,可知:△ABD是______三角形;
(2)同理由已知條件∠BCD=120°得到∠DCE=______,且CE=CD,可知______;
(3)要證BC+DC=AC,可將問題轉(zhuǎn)化為兩條線段相等,即______=______;
(4)要證(3)中所填寫的兩條線段相等,可以先證明….請你完成證明過程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等邊三角形ABC的邊長是4
3
,三角形內(nèi)有一點(diǎn)O,且OA=OB=OC,則OA=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等邊三角形邊長為2,則面積為______.

查看答案和解析>>

同步練習(xí)冊答案